An Introduction to Investment TheoryWilliam N. GoetzmannYALE School of Management Chapter IV: The Portfolio Approach to RiskI. The Quest For the Tangency Portfolio In the 1960's financial researchers working with Harry Markowitz's mean-variance model of portfolio construction made a remarkable discovery that would change investment theory and practice in the United States and the world. The discovery was based upon an idealized model of the markets, in which all the world's risky assets were included in the investor opportunity set and one riskless asset existed, allowing both more and less risk averse investors to find their optimal portfolio along the tangency ray. ![]() Assuming that investors could borrow and lend at the riskless rate, this simple diagram suggested that everyone in the world would want to hold precisely the same portfolio of risky assets! That portfolio, identified at the point of tangency, represents some portfolio mix of the world's assets. Identify it, and the world will beat a path to your door. The tangency portfolio soon became the centerpiece of a classical model in finance. The associated argument about investor choice is called the "Two Fund Separation Theorem" because it argues that all investors will make their choice between two funds: the risky tangency portfolio and the riskless "fund". Identifying this tangency portfolio is harder than it looks. Recall that a major difficulty in estimating an efficient frontier accurately is that errors grow as the number of assets increase. You cannot just dump all the means, std's and correlations for the world's assets into an optimizer and turn the crank. If you did, you would get a nonsensical answer. Sadly enough, empirical research was not the answer, due to statistical estimation problems. The answer to the question came from theory. Financial economist William Sharpe is one of the creators of the "Capital Asset Pricing Model," a theory which began as a quest to identify the tangency portfolio. Since that time, it has developed into much, much more. In fact, the CAPM, as it is called, is the predominant model used for estimating equity risk and return.
This is a long list of requirements, and together they describe the capitalist's ideal world. Everything may be bought and sold in perfectly liquid fractional amounts -- even human capital! There is a perfect, safe haven for risk-averse investors i.e. the riskless asset. This means that everyone is an equally good credit risk! No one has any informational advantage in the CAPM world. Everyone has already generously shared all of their knowledge about the future risk and return of the securities, so no one disagrees about expected returns. All customer preferences are an open book -- risk attitudes are well described by a simple utility function. There is no mystery about the shape of the future return distributions. Last but not least, decisions are not complicated by the ability to change your mind through time. You invest irrevocably at one point, and reap the rewards of your investment in the next period -- at which time you and the investment problem cease to exist. Terminal wealth is measured at that time. I.e. he who dies with the most toys wins! The technical name for this setting is "A frictionless one-period, multi-asset economy with no asymmetric information." The CAPM argues that these assumptions imply that the tangency portfolio will be a value-weighted mix of all the assets in the world The proof is actually an elegant equilibrium argument. It begins with the assertion that all risky assets in the world may be regarded as "slices" of a global wealth portfolio. We may graphically represent this as a large, square "cake," sliced horizontally in varying widths. The widths are proportional to the size of each company. Size in this case is determined by the number of shares times the price per share. ![]() Here is the equilibrium part of the argument: Assume that all investors in the world collectively hold all the assets in the world, and that, for every borrower at the riskless rate there is a lender. This last condition is needed so that we can claim that the positions in the riskless asset "net-out" across all investors. From the two-fund separation picture above, we already know that all investors will hold the same portfolio of risky assets, i.e. that the weights for each risky asset j will be the same across all investor portfolios. This knowledge allows us to cut the cake in another direction: vertically. As with companies, we vary the width of the slice according to the wealth of the individual. ![]() Notice that each vertical "slice" is a portfolio, and the weights are given by the relative asset values of the companies. We can calculate what the weights are exactly: weight on asset i = [price i x shares i] / world wealth
![]() The extent of this movement determines the price you are willing to pay (alternately, the return you demand) for holding asset A. The lower the average correlation A has with the rest of the assets in the portfolio, the more the frontier, and hence T, will move to the left. This is good news for the investor -- if A moves your portfolio left, you will demand lower expected return because it improves your portfolio risk-return profile. This is why the CAPM is called the "Capital Asset Pricing Model." It explains relative security prices in terms of a security's contribution to the risk of the whole portfolio, not its individual standard deviation.
Previous Chapter| Next Chapter || MPPM 540 Main Menu| Table of Contents|Mail Will| ![]() YALE School of Management |
|