//數(shù)值計(jì)算實(shí)驗(yàn) 數(shù)值積分
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <gsl/gsl_integration.h>
using namespace std;
//被積函數(shù)
double f( double x)
{
//為便于調(diào)試,先弄個(gè)有原函數(shù)的 y = x^2 + x^3 - 2*x^4
return x*x + x*x*x - 2*x*x*x*x;
}
//被積函數(shù) 給gsl用的
double g( double x, void * params)
{
return f(x);
}
//原函數(shù) 用于調(diào)試算法
double F( double x)
{
return (x*x*x)/3.0 + (x*x*x*x)/4.0 - 0.4*x*x*x*x*x;
}
//輸出被積函數(shù)的精確解
double Jinque( const double a, const double b)
{
return (F(b) - F(a));
}
//梯形法 求函數(shù)在[a,b]上的定積分,積分區(qū)間分為n部分
double Tixing( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每個(gè)間隔的長(zhǎng)度
for ( int i = 0; i < n; i++)
{
sum += (gaps/2.0) * (f(a + i*gaps) + f(a + (i+1)*gaps));
}
return sum;
}
//拋物線法
double Paowuxian( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每個(gè)間隔的長(zhǎng)度
double h = gaps/2.0;
for ( int i = 0; i < n; i++)
{
sum += (h/3.0) * (f(a + i*gaps) + f(a + (i+1)*gaps) + 4.0*f((2*a + (2*i+1)*gaps)/2.0));
}
return sum;
}
//柯特斯公式
double Cotes( const double & a, const double & b, const int & n)
{
double sum = 0.0;
double gaps = (b-a)/ double (n); //每個(gè)間隔的長(zhǎng)度
double h = gaps/2.0;
for ( int i = 0; i < n; i++)
{
sum += (h/45.0) * (7.0*f(a + i*gaps) +
32.0*f(a + i*gaps + 0.25*gaps) +
12.0*f(a + i*gaps + 0.5*gaps) +
32.0*f(a + i*gaps + 0.75*gaps) +
7.0*f(a + (i+1)*gaps));
}
return sum;
}
//gsl解法,參考gsl文檔
double gslIntegration( double & a, double & b)
{
gsl_function gf;
gf.function = g;
double r, er;
unsigned int n;
gsl_integration_qng(&gf, a, b, 1e-10, 1e-10, &r, &er, &n);
return r;
}
int main()
{
double a, b;
int n;
cout<< "請(qǐng)輸入積分區(qū)間:" <<endl;
cout<< "a = " ;
cin>>a;
cout<< "b = " ;
cin>>b;
cout<< "請(qǐng)輸入分割被積區(qū)間的數(shù)量:" ;
cin>>n;
if (a > b || n <= 1)
{
cout<< "輸入錯(cuò)誤!" <<endl;
exit (1);
}
//設(shè)置輸出精度
cout.precision(10);
//輸出精確解
double result = Jinque(a, b);
cout<< "函數(shù)在[" <<a<< "," <<b<< "]上的定積分為:" <<result<<endl;
//梯形法
double result1 = Tixing(a, b, n);
cout<< "梯形法:" <<endl;
cout<< "函數(shù)在[" <<a<< "," <<b<< "]上的定積分為:" <<result1<< " 相對(duì)誤差為:"
<< abs ((result1 - result)/result)*100<< "%" <<endl;
//拋物線法
double result2 = Paowuxian(a, b, n);
cout<< "拋物線法:" <<endl;
cout<< "函數(shù)在[" <<a<< "," <<b<< "]上的定積分為:" <<result2<< " 相對(duì)誤差為:"
<< abs ((result2 - result)/result)*100<< "%" <<endl;
//柯特斯公式法
double result3 = Cotes(a, b, n);
cout<< "柯特斯法:" <<endl;
cout<< "函數(shù)在[" <<a<< "," <<b<< "]上的定積分為:" <<result3<< " 相對(duì)誤差為:"
<< abs ((result3 - result)/result)*100<< "%" <<endl;
//調(diào)用gsl函數(shù)
double result4 = gslIntegration(a, b);
cout<< "gsl函數(shù)結(jié)果:" <<endl;
cout<< "函數(shù)在[" <<a<< "," <<b<< "]上的定積分為:" <<result4<< " 相對(duì)誤差為:"
<< abs ((result4 - result)/result)*100<< "%" <<endl;
return 0;
}
|