原文地址::http://blog.csdn.net/lishuiwang/article/details/6130299
//
/*regulator 是驅(qū)動中電源管理的基礎(chǔ)設(shè)施。要先注冊到內(nèi)核中,然后使用這些電壓輸出的模塊get其regulator,在驅(qū)動中的init里,在適當時間中進行電壓電流的設(shè)置.
與 gpio 差不多? 一樣是基礎(chǔ)設(shè)施?
*/
//
Linux 內(nèi)核的動態(tài)電壓和電流控制接口
功耗已經(jīng)成為電子產(chǎn)品設(shè)計的首要考慮。
//
"LDO是 low dropout regulator,意為低壓差線性穩(wěn)壓器",是相對于傳統(tǒng)的線性穩(wěn)壓器來說的。傳統(tǒng)的線性穩(wěn)壓器,如78xx系列的芯片都要求輸入電壓要比輸出電壓高出 2v~3V以上,否則就不能正常工作。但是在一些情況下,這樣的條件顯然是太苛刻了,如5v轉(zhuǎn)3.3v,輸入與輸出的壓差只有1.7v,顯然是不滿足條件的。針對這種情況,才有了LDO類的電源轉(zhuǎn)換芯片。生產(chǎn)LDO芯片的公司很多,常見的有ALPHA, Linear(LT), Micrel, National semiconductor,TI等
in:twl4030-poweroff.c
pm_power_off: what it for???
一種稱為校準器(regulator)的動態(tài)電壓和電流控制的方法,很有參考意義和實際使用價值。
//***********************************************************************//
1: 校準器的基本概念
所謂校準器實際是在軟件控制下把輸入的電源調(diào)節(jié)精心輸出。
2:Consumer 的API
regulator = regulator_get(dev, “Vcc”);
其中,dev 是設(shè)備“Vcc”一個字符串代表,校準器(regulator)然后返回一個指針,也是regulator_put(regulator)使用的。
打開和關(guān)閉校準器(regulator)API如下。
int regulator_enable(regulator);
int regulator_disable(regulator);
3: 電壓的API
消費者可以申請?zhí)峁┙o它們的電壓,如下所示。
int regulator_set_voltage(regulator, int min_uV, int max_uV);
在改變電壓前要檢查約束,如下所示。
regulator_set_voltage(regulator,100000,150000)
電壓值下面的設(shè)置改變?nèi)缦滤尽?/div>
int regulator_get_voltage)struct regulator *regulator);
4:校準器的驅(qū)動和系統(tǒng)配置
在實際使用校準器之前,需要按照下面的結(jié)構(gòu)寫校準器的驅(qū)動程序,然后注冊后通知給消費者使用。
//************************* linux regulator 模型******************************************//
static LIST_HEAD(regulator_list); //整個regulator模型的所有regulator.
static LIST_HEAD(regulator_map_list); //整個regulator模型的map
struct regulator_consumer_supply : 用戶支持的接口映射。 supply -> device
struct regulator_state: 用于表示 在整個系統(tǒng)的低功耗狀態(tài)下的設(shè)備狀態(tài)。
struct regulation_constraints : 操作約束。
struct regulator_init_data 校準器平臺初始化數(shù)據(jù)。
struct regulator_dev
向內(nèi)核注冊后 得到regulator設(shè)備結(jié)構(gòu) 注冊:
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,struct device *dev, void *driver_data)
反注冊:
要使用注冊得到 regulator_dev:
void regulator_unregister(struct regulator_dev *rdev)
/* Regulator operating modes.**/
#define REGULATOR_MODE_FAST 0x1 //電壓可以快速調(diào)
#define REGULATOR_MODE_NORMAL 0x2 //一般模式
#define REGULATOR_MODE_IDLE 0x4 //低load
#define REGULATOR_MODE_STANDBY 0x8 //sleep/ standby 狀態(tài)下 低功耗
例子:
/* VSIM for OMAP VDD_MMC1A (i/o for DAT4..DAT7) */
static struct regulator_init_data zoom2_vsim = { //這個data被置于 對應的 platform_device 的data字段中。
.constraints = { .min_uV
= 1800000,
.max_uV
= 3000000,
.valid_modes_mask= REGULATOR_MODE_NORMAL /*這里設(shè)置*/
| REGULATOR_MODE_STANDBY,
.valid_ops_mask= REGULATOR_CHANGE_VOLTAGE /*這里設(shè)置這個regulator上可進行的操作。調(diào)電壓,模式可變,可以打開關(guān)閉*/
| REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_STATUS,
},
.num_consumer_supplies = 1,
.consumer_supplies = &zoom2_vsim_supply,
};
// regulator 的初始化數(shù)據(jù)要放到 device 's platform_data
struct regulator_init_data *init_data = dev->platform_data;
" 重點"
//*************************** twl4030 regulator 的實現(xiàn) ****************************//
struct twlreg_info : 關(guān)聯(lián)到驅(qū)動與設(shè)備的數(shù)據(jù)。驅(qū)動的私有數(shù)據(jù),driver_data.
struct twlreg_info {
/* start of regulator's PM_RECEIVER control register bank */
u8
base;
/* twl4030 resource ID, for resource control state machine */
u8
id;
/* FIXED_LDO voltage */
u8
deciV;
/* voltage in mV = table[VSEL]; table_len must be a power-of-two */
u8
table_len;
const u16*table;
/* used by regulator core */
struct regulator_descdesc;
};
//一個驅(qū)動 (platform_driver)對應所有的regulator, 每個regulator在內(nèi)核中表示為一個platform_device. 所以調(diào)用了許多次的probe
//在probe中,從全局數(shù)組中取出自定義的數(shù)據(jù)結(jié)構(gòu): twlreg_info, 然后從platform_device中取出初始化數(shù)據(jù)(device's platform_data),然后就可以向內(nèi)核注冊一個 regulator(會返回一個regulator_dev:類)。
"struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,struct device *dev, void *driver_data)"
1:
1: 每個regulator 的 "twlreg_info" 被 存于 regulator_dev 的 device 's driver_data, twlreg_info中的 table 存支持的電壓值。
2:兩種操作結(jié)構(gòu)"regulator_ops":twl4030fixed_ops(電壓固定), twl4030ldo_ops(電壓可調(diào))
3:傳入每個 ops中的操作函數(shù) 的參數(shù)是: regulator_dev.
4: 在 twl4030-core.c中,在添加 twl4030的 i2c_client時,添加了所有的 regulator 的 platform_device.
5: 在驅(qū)動初始化注冊中,內(nèi)核會自動去匹配 bus上的所有符合的 platform_device(代表regulator,init_data 放于device's platform_data), 所以一個驅(qū)動就可以匹配到 bus上所有對應的 regulator.
6: 每匹配一個 regulator的 platform_device時,就會從中,platform_device的 device 中的 platform_data 中得到 regulator的初始化數(shù)據(jù): regulator_init_data
7: 取出初始化數(shù)據(jù)后, 設(shè)置一下. "設(shè)置,即是當設(shè)備支持一定的功能后,由驅(qū)動來控制時,要匹配驅(qū)動能做到的功能。that is 兩者 與(&) 一下"
然后,從regulator模塊的全局數(shù)組"twl4030_regs[]" 中取出 twlreg_info
if (twl4030_regs[i].desc.id != pdev->id)
continue;
info = twl4030_regs + i;
就可以向內(nèi)核注冊這個 regulator了:
"rdev = regulator_register(&info->desc, &pdev->dev, info);"
"注冊后返回一個 regulator_dev": 然后把這個rdev輸入到 platform_device 's device 's driver_data... 主要用于 remove中???
regulator_dev:是一個類,其父是 本regulator的platform_device 's device.
8: // regulator_ops 存入了 regulator_desc, 然后注冊時,desc 關(guān)聯(lián)到了 regulator_dev-> desc = desc.
生成 regualator_dev, 設(shè)置數(shù)據(jù),注冊sysfs,然后: constraints, attribute, supply ,comsumer device.
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,struct device *dev, void *driver_data)
9:
另:
大部分的regulator的platform_device生成如下:
每個regulator設(shè)備注冊到內(nèi)核的時機是在 twl4030-core.c 中。
把regulator的初始化數(shù)據(jù),放到新生成的platform_device 's device 's platform_data...
然后注冊 platform_device 到內(nèi)核中。
usb部分的 regulator生成如下:(這里明顯是由于OMAP不一定是有USB??,然后在其board-zoom2.c中,"沒有設(shè)置每個初始化數(shù)據(jù)"(包括:supply,constraints(min,max,mask)))
而對于usb模塊的 regulator, 先生成對應的platform_device, 返回了platform_device->device, 然后利用這個device去形成多個: regulator_consumer_supply.dev = device.
然后用這些 regulator_consumer_supply, 來做comsumer并生成 platform_device.注冊
//************************** 使用regulator ***************************//
regulator已經(jīng)向內(nèi)核模型注冊了,但如何使用呢,怎樣調(diào)節(jié)電壓??
//注冊后,內(nèi)核中就已經(jīng)有對應的regulator對應的 supply consumer. 然后在驅(qū)動中任何地方調(diào)用接口即可:
//regulator_get, regulator_enable, regulator_disable, regulator_set_voltage, regulator_get_voltage......
1: 在twl4030-usb模塊中,會用到 usb對應的 reuglator,, fixed_ops
twl->usb3v1 = regulator_get(twl->dev, "usb3v1");
regulator_enable(twl->usb3v1);
regulator_disable(twl->usb1v5);
2:
regulator = regulator_get(dev, “Vcc”);
其中,dev 是設(shè)備“Vcc”一個字符串代表,校準器(regulator)然后返回一個指針,也是regulator_put(regulator)使用的。
打開和關(guān)閉校準器(regulator)API如下。
int regulator_enable(regulator);
int regulator_disable(regulator);
電壓的API
消費者可以申請?zhí)峁┙o它們的電壓,如下所示。
int regulator_set_voltage(regulator, int min_uV, int max_uV);
在改變電壓前要檢查約束,如下所示。
regulator_set_voltage(regulator,100000,150000)
//************************************************//
/**
* struct regulator_desc - Regulator descriptor
*
* Each regulator registered with the core is described with a structure of
* this type.
*
* @name: Identifying name for the regulator.
* @id: Numerical identifier for the regulator.
* @n_voltages: Number of selectors available for ops.list_voltage().
* @ops: Regulator operations table.
* @irq: Interrupt number for the regulator.
* @type: Indicates if the regulator is a voltage or current regulator.
* @owner: Module providing the regulator, used for refcounting.
*/
struct regulator_desc {
const char *name;
int id;
unsigned n_voltages;
struct regulator_ops *ops;
int irq;
enum regulator_type type;
struct module *owner;
};
enum regulator_status {
REGULATOR_STATUS_OFF,
REGULATOR_STATUS_ON,
REGULATOR_STATUS_ERROR,
/* fast/normal/idle/standby are flavors of "on" */
REGULATOR_STATUS_FAST,
REGULATOR_STATUS_NORMAL,
REGULATOR_STATUS_IDLE,
REGULATOR_STATUS_STANDBY,
};
/*
* struct regulator_dev
*
* Voltage / Current regulator class device. One for each regulator.
*/
struct regulator_dev {
struct regulator_desc *desc;
int use_count;
/* lists we belong to */
struct list_head list; /* list of all regulators */
struct list_head slist; /* list of supplied regulators */
/* lists we own */
struct list_head consumer_list; /* consumers we supply */
struct list_head supply_list; /* regulators we supply */
struct blocking_notifier_head notifier;
struct mutex mutex; /* consumer lock */
struct module *owner;
struct device dev;
struct regulation_constraints *constraints;
struct regulator_dev *supply;/* for tree */
void *reg_data;/* regulator_dev data */
};
/*
* struct regulator
*
* One for each consumer device.
*/
struct regulator {
struct device *dev;
struct list_head list;
int uA_load;
int min_uV;
int max_uV;
int enabled; /* count of client enables */
char *supply_name;
struct device_attribute dev_attr;
struct regulator_dev *rdev;
};
/*
* struct regulator_map
*
* Used to provide symbolic supply names to devices.
*/
struct regulator_map {
struct list_head list;
struct device *dev;
const char *supply;
struct regulator_dev *regulator;
};
/**
* struct regulator_state - regulator state during low power syatem states
*
* This describes a regulators state during a system wide low power state.
*
* @uV: Operating voltage during suspend.
* @mode: Operating mode during suspend.
* @enabled: Enabled during suspend.
*/
struct regulator_state {
int uV;
/* suspend voltage */
unsigned int mode; /* suspend regulator operating mode */
int enabled; /* is regulator enabled in this suspend state */
};
/**
* struct regulation_constraints - regulator operating constraints.
*
* This struct describes regulator and board/machine specific constraints.
*
* @name: Descriptive name for the constraints, used for display purposes.
*
* @min_uV: Smallest voltage consumers may set.
* @max_uV: Largest voltage consumers may set.
*
* @min_uA: Smallest consumers consumers may set.
* @max_uA: Largest current consumers may set.
*
* @valid_modes_mask: Mask of modes which may be configured by consumers.
* @valid_ops_mask: Operations which may be performed by consumers.
*
* @always_on: Set if the regulator should never be disabled.
* @boot_on: Set if the regulator is enabled when the system is initially
* started.
* @apply_uV: Apply the voltage constraint when initialising.
*
* @input_uV: Input voltage for regulator when supplied by another regulator.
*
* @state_disk: State for regulator when system is suspended in disk mode.
* @state_mem: State for regulator when system is suspended in mem mode.
* @state_standby: State for regulator when system is suspended in standby
* mode.
* @initial_state: Suspend state to set by default.
*/
struct regulation_constraints {
char *name;
/* voltage output range (inclusive) - for voltage control */
int min_uV;
int max_uV;
/* current output range (inclusive) - for current control */
int min_uA;
int max_uA;
/* valid regulator operating modes for this machine */
unsigned int valid_modes_mask;
/* valid operations for regulator on this machine */
unsigned int valid_ops_mask;
/* regulator input voltage - only if supply is another regulator */
int input_uV;
/* regulator suspend states for global PMIC STANDBY/HIBERNATE */
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state; /* suspend state to set at init */
/* constriant flags */
unsigned always_on:1;/* regulator never off when system is on */
unsigned boot_on:1;/* bootloader/firmware enabled regulator */
unsigned apply_uV:1;/* apply uV constraint iff min == max */
};
/**
* struct regulator_consumer_supply - supply -> device mapping
*
* This maps a supply name to a device.
*
* @dev: Device structure for the consumer.
* @supply: Name for the supply.
*/
struct regulator_consumer_supply {
struct device *dev;/* consumer */
const char *supply;/* consumer supply - e.g. "vcc" */
};
/**
* struct regulator_desc - Regulator descriptor
*
* Each regulator registered with the core is described with a structure of
* this type.
*
* @name: Identifying name for the regulator.
* @id: Numerical identifier for the regulator.
* @n_voltages: Number of selectors available for ops.list_voltage().
* @ops: Regulator operations table.
* @irq: Interrupt number for the regulator.
* @type: Indicates if the regulator is a voltage or current regulator.
* @owner: Module providing the regulator, used for refcounting.
*/
struct regulator_desc {
const char *name;
int id;
unsigned n_voltages;
struct regulator_ops *ops;
int irq;
enum regulator_type type;
struct module *owner;
};
/**
* struct regulator_init_data - regulator platform initialisation data.
*
* Initialisation constraints, our supply and consumers supplies.
*
* @supply_regulator_dev: Parent regulator (if any).
*
* @constraints: Constraints. These must be specified for the regulator to
* be usable.
* @num_consumer_supplies: Number of consumer device supplies.
* @consumer_supplies: Consumer device supply configuration.
*
* @regulator_init: Callback invoked when the regulator has been registered.
* @driver_data: Data passed to regulator_init.
*/
struct regulator_init_data {
struct device *supply_regulator_dev; /* or NULL for LINE */
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply *consumer_supplies;
/* optional regulator machine specific init */
int (*regulator_init)(void *driver_data);
void *driver_data;/* core does not touch this */
};
/*
* Regulator operation constraint flags. These flags are used to enable
* certain regulator operations and can be OR'ed together.
*
* VOLTAGE: Regulator output voltage can be changed by software on this
* board/machine.
* CURRENT: Regulator output current can be changed by software on this
* board/machine.
* MODE: Regulator operating mode can be changed by software on this
* board/machine.
* STATUS: Regulator can be enabled and disabled.
* DRMS: Dynamic Regulator Mode Switching is enabled for this regulator.
*/
#define REGULATOR_CHANGE_VOLTAGE 0x1
#define REGULATOR_CHANGE_CURRENT 0x2
#define REGULATOR_CHANGE_MODE 0x4
#define REGULATOR_CHANGE_STATUS 0x8
#define REGULATOR_CHANGE_DRMS 0x10
/*
* Regulator operating modes.
*
* Regulators can run in a variety of different operating modes depending on
* output load. This allows further system power savings by selecting the
* best (and most efficient) regulator mode for a desired load.
*
* Most drivers will only care about NORMAL. The modes below are generic and
* will probably not match the naming convention of your regulator data sheet
* but should match the use cases in the datasheet.
*
* In order of power efficiency (least efficient at top).
*
* Mode Description
* FAST Regulator can handle fast changes in it's load.
* e.g. useful in CPU voltage & frequency scaling where
* load can quickly increase with CPU frequency increases.
*
* NORMAL Normal regulator power supply mode. Most drivers will
* use this mode.
*
* IDLE Regulator runs in a more efficient mode for light
* loads. Can be used for devices that have a low power
* requirement during periods of inactivity. This mode
* may be more noisy than NORMAL and may not be able
* to handle fast load switching.
*
* STANDBY Regulator runs in the most efficient mode for very
* light loads. Can be used by devices when they are
* in a sleep/standby state. This mode is likely to be
* the most noisy and may not be able to handle fast load
* switching.
*
* NOTE: Most regulators will only support a subset of these modes. Some
* will only just support NORMAL.
*
* These modes can be OR'ed together to make up a mask of valid register modes.
*/
#define REGULATOR_MODE_FAST 0x1
#define REGULATOR_MODE_NORMAL 0x2
#define REGULATOR_MODE_IDLE 0x4
#define REGULATOR_MODE_STANDBY 0x8
|
|
來自: 老匹夫 > 《Regulator》