乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      Bernstein Polynomial

       imelee 2016-09-05

      Bernstein Polynomial

      DOWNLOAD Mathematica Notebook BernsteinPolynomial

      The polynomials defined by

       B_(i,n)(t)=(n; i)t^i(1-t)^(n-i),
      (1)

      where (n; k) is a binomial coefficient. The Bernstein polynomials of degree n form a basis for the power polynomials of degree n. The first few polynomials are

      B_(0,0)(t)=1
      (2)
      B_(0,1)(t)=1-t
      (3)
      B_(1,1)(t)=t
      (4)
      B_(0,2)(t)=(1-t)^2
      (5)
      B_(1,2)(t)=2(1-t)t
      (6)
      B_(2,2)(t)=t^2
      (7)
      B_(0,3)(t)=(1-t)^3
      (8)
      B_(1,3)(t)=3(1-t)^2t
      (9)
      B_(2,3)(t)=3(1-t)t^2
      (10)
      B_(3,3)(t)=t^3.
      (11)

      The Bernstein polynomials are implemented in the Wolfram Language as BernsteinBasis[n, i, t].

      The Bernstein polynomials have a number of useful properties (Farin 1993). They satisfy symmetry

       B_(i,n)(t)=B_(n-i,n)(1-t),
      (12)

      positivity

       B_(i,n)(t)>=0
      (13)

      for 0<=t<=1, normalization

       sum_(i=0)^nB_(i,n)(t)=1,
      (14)

      and B_(i,n) with i!=0,n has a single unique local maximum of

       i^in^(-n)(n-i)^(n-i)(n; i)
      (15)

      occurring at t=i/n.

      BernsteinPolynomialEnvelope

      The envelope f_n(x) of the Bernstein polynomials B_(i,n)(x) for i=0, 1, ..., n (Mabry 2003) is given by

       f_n(x)=1/(sqrt(2pinx(1-x))),
      (16)

      illustrated above for n=20.

      SEE ALSO: Bernstein Expansion, Bézier Curve, Spline
      REFERENCES:

      Bernstein, S. "Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities." Comm. Soc. Math. Kharkov 13, 1-2, 1912.

      Farin, G. Curves and Surfaces for Computer Aided Geometric Design. San Diego: Academic Press, 1993.

      Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed. New York: Wiley, p. 222, 1971.

      Kac, M. "Une remarque sur les polynomes de M. S. Bernstein." Studia Math. 7, 49-51, 1938.

      Kac, M. "Reconnaissance de priorité relative à ma note, 'Une remarque sur les polynomes de M. S. Bernstein.' " Studia Math. 8, 170, 1939.

      Lorentz, G. G. Bernstein Polynomials. Toronto: University of Toronto Press, 1953.

      Mabry, R. "Problem 10990." Amer. Math. Monthly 110, 59, 2003.

      Mathé, P. "Approximation of H?lder Continuous Functions by Bernstein Polynomials." Amer. Math. Monthly 106, 568-574, 1999.

      Widder, D. V. The Laplace Transform. Princeton, NJ: Princeton University Press, p. 101, 1941.

      Referenced on Wolfram|Alpha: Bernstein Polynomial
      CITE THIS AS:

      Weisstein, Eric W. "Bernstein Polynomial." From MathWorld--A Wolfram Web Resource. http://mathworld./BernsteinPolynomial.html

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多