乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      葵花寶典之機(jī)器學(xué)習(xí):全網(wǎng)最重要的AI資源都在這里了

       樟榆詩(shī)詞 2017-08-09


      2000年早期,Robbie Allen在寫一本關(guān)于網(wǎng)絡(luò)和編程的書的時(shí)候,深有感觸。他發(fā)現(xiàn),互聯(lián)網(wǎng)很不錯(cuò),但是資源并不完善。那時(shí)候,博客已經(jīng)開始流行起來(lái)。但是,Youtube還不是很普遍,Quora、 Twitter和播客同樣用者甚少。

      在他轉(zhuǎn)向人工智能和機(jī)器學(xué)習(xí)10年過(guò)后,局面發(fā)生了天翻地覆的變化:網(wǎng)上資源非相當(dāng)豐富,以至于很多人出現(xiàn)了選擇困難,不知道該從哪里開始(和停止)學(xué)習(xí)!

      為了使大家能夠更加便利地使用這些資源,Robbie Allen瀏覽查看各種各樣的資源,把它們打包整理了出來(lái)。AI科技大本營(yíng)在此借花獻(xiàn)佛,和大家共同分享這些資源。通過(guò)它們,你將會(huì)對(duì)人工智能和機(jī)器學(xué)習(xí)有一個(gè)基本的認(rèn)知。

      這些資源內(nèi)容安排如下:知名研究者,研究機(jī)構(gòu),視頻課程,YouTube,博客,媒體作家,書籍,Quora主題欄,Reddit,Github庫(kù),播客, 實(shí)事通訊媒體、會(huì)議、論文。

      如果你也有好的資源是這里沒有列出的,歡迎評(píng)論區(qū)一起交流!

      研究者

      大多數(shù)知名的人工智能研究者在網(wǎng)絡(luò)上的曝光率還是很高的。下面列舉了20位知名學(xué)者,以及他們的個(gè)人網(wǎng)站鏈接,維基百科鏈接,推特主頁(yè),Google學(xué)術(shù)主頁(yè),Quora主頁(yè)。他們中相當(dāng)一部分人在Reddit或Quora上面參與了問(wèn)答。

      Sebastian Thrun

      個(gè)人官網(wǎng):

      http://robots./

      Wikipedia:

      https://en./wiki/Sebastian_Thrun

      Twitter:

      https://twitter.com/SebastianThrun

      Google Scholar:

      https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao

      Quora:

      https://www./profile/Sebastian-Thrun

      Reddit AMA:

      https://www./r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

      Yann LeCun

      個(gè)人官網(wǎng):

      http://yann./

      Wikipedia:

      https://en./wiki/Sebastian_Thrun

      Twitter:

      https://twitter.com/ylecun?

      Google Scholar:

      https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en

      Quora:

      https://www./profile/Yann-LeCun

      Reddit AMA:

      http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

      Nando de Freitas

      個(gè)人官網(wǎng):

      http://www.cs./~nando/

      Wikipedia:

      https://en./wiki/Nando_de_Freitas

      Twitter:

      https://twitter.com/NandoDF

      Google Scholar:

      https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en

      Reddit AMA:

      http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

      Andrew Ng

      個(gè)人官網(wǎng):

      http://www./

      Wikipedia:

      https://en./wiki/Andrew_Ng

      Twitter:

      https://twitter.com/AndrewYNg

      Google Scholar:

      https://scholar.google.com/citations?use

      Quora:

      https://www./profile/Andrew-Ng'

      Reddit AMA:

      http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

      Daphne Koller

      個(gè)人官網(wǎng):

      http://ai./users/koller/

      Wikipedia:

      https://en./wiki/Daphne_Koller

      Twitter:

      https://twitter.com/DaphneKoller?lang=en

      Google Scholar:

      https://scholar.google.com/citations?user=5Iqe53IAAAAJ

      Quora:

      https://www./profile/Daphne-Koller

      Quora Session:

      https://www./session/Daphne-Koller/1

      Adam Coates

      個(gè)人官網(wǎng):

      http://cs./~acoates/

      Twitter:

      https://twitter.com/adampaulcoates

      Google Scholar:

      https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en'

      Reddit AMA:

      http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

      Jürgen Schmidhuber

      個(gè)人官網(wǎng):

      http://people./~juergen/

      Wikipedia:

      https://en./wiki/J%C3%BCrgen_Schmidhuber

      Google Scholar:

      https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en

      Reddit AMA:

      http://www./r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

      Geoffrey Hinton

      個(gè)人官網(wǎng):

      Wikipedia:

      https://en./wiki/Geoffrey_Hinton

      Google Scholar:

      http://www.cs./~hinton/

      Reddit AMA:

      http://www./r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

      Terry Sejnowski

      個(gè)人官網(wǎng):

      http://www./scientist/terrence-sejnowski/

      Wikipedia:

      https://en./wiki/Terry_Sejnowski

      Twitter:

      https://twitter.com/sejnowski?lang=en

      Google Scholar:

      https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en

      Reddit AMA:

      https://www./r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

      Michael Jordan

      個(gè)人官網(wǎng):

      https://people.eecs./~jordan/

      Wikipedia:

      https://en./wiki/Michael_I._Jordan

      Google Scholar:

      https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en'

      Reddit AMA:

      http://www./r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

      Peter Norvig

      個(gè)人官網(wǎng):

      http:///

      Wikipedia:

      https://en./wiki/Peter_Norvig

      Google Scholar:

      https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en

      Reddit AMA:

      https://www./r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

      Yoshua Bengio

      個(gè)人官網(wǎng):

      http://www.iro./~bengioy/yoshua_en/

      Wikipedia:

      https://en./wiki/Yoshua_Bengio

      Google Scholar:

      https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en

      Quora:

      https://www./profile/Yoshua-Bengio

      Reddit AMA:

      http://www./r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

      Ina Goodfellow

      個(gè)人官網(wǎng):

      http://www./

      Wikipedia:

      https://en./wiki/Ian_Goodfellow

      Twitter:

      https://twitter.com/goodfellow_ian

      Google Scholar:

      https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en

      Quora:

      https://www./profile/Ian-Goodfellow

      Quora Session:

      https://www./session/Ian-Goodfellow/1

      Andrej Karpathy

      個(gè)人官網(wǎng):

      http://karpathy./

      Twitter:

      https://twitter.com/karpathy

      Google Scholar:

      https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en

      Quora:

      https://www./profile/Andrej-Karpathy

      Quora Session:

      https://www./session/Andrej-Karpathy/1

      Richard Socher

      個(gè)人官網(wǎng):

      http://www./

      Twitter:

      https://twitter.com/RichardSocher

      Google Scholar:

      https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en

      Interview:

      http://www./2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

      Demis Hassabis

      個(gè)人官網(wǎng):

      http:///

      Wikipedia:

      https://en./wiki/Demis_Hassabis

      Twitter:

      https://twitter.com/demishassabis

      Google Scholar:

      https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en

      Interview:

      https://www./features/2016-demis-hassabis-interview-issue/

      Christopher Manning

      個(gè)人官網(wǎng):

      https://nlp./~manning/

      Twitter:

      https://twitter.com/chrmanning

      Google Scholar:

      https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en'

      Fei-Fei Li

      個(gè)人官網(wǎng):

      http://vision./people.html

      Wikipedia:

      https://en./wiki/Fei-Fei_Li

      Twitter:

      https://twitter.com/drfeifei

      Google Scholar:

      https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en'

      Ted Talk:

      https://www./talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/transcript?language=en

      Fran?ois Chollet

      個(gè)人官網(wǎng):

      https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

      Twitter:

      https://twitter.com/fchollet

      Google Scholar:

      https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

      Quora:

      https://www./profile/Fran%C3%A7ois-Chollet

      Quora Session:

      https://www./session/Fran%C3%A7ois-Chollet/1

      Dan Jurafsky

      個(gè)人官網(wǎng):

      https://web./~jurafsky/

      Wikipedia:

      https://en./wiki/Daniel_Jurafsky

      Twitter:

      https://twitter.com/jurafsky

      Google Scholar:

      https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en

      Oren Etzioni

      個(gè)人官網(wǎng):

      http:///team/orene/

      Wikipedia:

      https://en./wiki/Oren_Etzioni

      Twitter:

      https://twitter.com/etzioni

      Google Scholar:

      https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en

      Quora:

      https://scholar.google.com/citations?user

      Reddit AMA:

      https://www./r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

      機(jī)構(gòu)

      網(wǎng)絡(luò)上有大量的知名機(jī)構(gòu)致力于推進(jìn)人工智能領(lǐng)域的研究和發(fā)展。

      以下列出的是同時(shí)擁有官方網(wǎng)站/博客和推特賬號(hào)的機(jī)構(gòu)。

      OpenAI

      官網(wǎng):https:///

      Twitter:https://twitter.com/OpenAI

      DeepMind

      官網(wǎng):https:///

      Twitter:https://twitter.com/DeepMindA

      Google Research

      官網(wǎng):https://research./

      Twitter:https://twitter.com/googleresearch

      AWS AI

      官網(wǎng):https://aws.amazon.com/blogs/ai/

      Twitter:https://twitter.com/awscloud

      Facebook AI Research

      官網(wǎng):https://research./category/facebook-ai-research-fair/

      Microsoft Research

      官網(wǎng):https://www.microsoft.com/en-us/research/

      Twitter:https://twitter.com/MSFTResearch

      Baidu Research

      官網(wǎng):http://research.baidu.com/

      Twitter:https://twitter.com/baiduresearch?lang=en

      IntelAI

      官網(wǎng):https://software.intel.com/en-us/ai

      Twitter:https://twitter.com/IntelAI

      AI2

      官網(wǎng):http:///

      Twitter:https://twitter.com/allenai_org

      Partnership on AI

      官網(wǎng):https://www./

      Twitter:https://twitter.com/partnershipai

      視頻課程

      以下列出的是一些免費(fèi)的視頻課程和教程。

      Coursera?—?Machine Learning (Andrew Ng):

      https://www./learn/machine-learning#syllabus

      Coursera?—?Neural Networks for Machine Learning (Geoffrey Hinton):

      https://www./learn/neural-networks

      Udacity?—?Intro to Machine Learning (Sebastian Thrun):

      https://classroom./courses/ud120

      Udacity?—?Machine Learning (Georgia Tech):

      https://www./course/machine-learning--ud262

      Udacity?—?Deep Learning (Vincent Vanhoucke):

      https://www./course/deep-learning--ud730

      Machine Learning (mathematicalmonk):

      https://www./playlist?list=PLD0F06AA0D2E8FFBA

      Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):

      http://course./start.html

      Stanford CS231n?—?Convolutional Neural Networks for Visual Recognition (Winter 2016) :

      https://www./watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

      (class link):http://cs231n./

      Stanford CS224n?—?Natural Language Processing with Deep Learning (Winter 2017) :

      https://www./playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

      (class link):http://web./class/cs224n/

      Oxford Deep NLP 2017 (Phil Blunsom et al.):

      https://github.com/oxford-cs-deepnlp-2017/lectures

      Reinforcement Learning (David Silver):

      http://www0.cs./staff/d.silver/web/Teaching.html

      Practical Machine Learning Tutorial with Python (sentdex):

      https://www./watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

      YouTube

      以下,我列舉了一些YoutTube頻道和用戶,它們的主要內(nèi)容是人工智能或者機(jī)器學(xué)習(xí)。這里按照受歡迎程度列舉如下:

      sentdex (225K subscribers, 21M views):

      https://www./user/sentdex

      Artificial Intelligence A.I. (7M views):

      https://www./channel/UC-XbFeFFzNbAUENC8Ofpn3g

      Siraj Raval (140K subscribers, 5M views):

      https://www./channel/UCWN3xxRkmTPmbKwht9FuE5A

      Two Minute Papers (60K subscribers, 3.3M views):

      https://www./user/keeroyz

      DeepLearning.TV (42K subscribers, 1.7M views):

      https://www./channel/UC9OeZkIwhzfv-_Cb7fCikLQ

      Data School (37K subscribers, 1.8M views):

      https://www./user/dataschool

      Machine Learning Recipes with Josh Gordon (324K views):

      https://www./playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

      Artificial Intelligence?—?Topic (10K subscribers):

      https://www./channel/UC9pXDvrYYsHuDkauM2fLllQ

      Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views):

      https://www./channel/UCEqgmyWChwvt6MFGGlmUQCQ

      Machine Learning at Berkeley (634 subscribers, 48K views):

      https://www./channel/UCXweTmAk9K-Uo9R6SmfGtjg

      Understanding Machine Learning?—?Shai Ben-David (973 subscribers, 43K views):

      https://www./channel/UCR4_akQ1HYMUcDszPQ6jh8Q

      Machine Learning TV (455 subscribers, 11K views):

      https://www./channel/UChIaUcs3tho6XhyU6K6KMrw

      博客

      Andrej Karpathy

      博客:http://karpathy./

      Twitter:https://twitter.com/karpathy

      i am trask

      博客:http://iamtrask./

      Twitter:https://twitter.com/iamtrask

      Christopher Olah

      博客:http://colah./

      Twitter:https://twitter.com/ch402

      Top Bots

      博客:http://www./

      Twitter:https://twitter.com/topbots

      WildML

      博客:http://www./

      Twitter:https://twitter.com/dennybritz

      Distill

      博客:http:///

      Twitter:https://twitter.com/distillpub

      Machine Learning Mastery

      博客:http:///blog/

      Twitter:https://twitter.com/TeachTheMachine

      FastML

      博客:http:///

      Twitter:https://twitter.com/fastml_extra

      Adventures in NI

      博客:https://joanna-bryson./

      Twitter:https://twitter.com/j2bryson

      Sebastian Ruder

      博客:http:///

      Twitter:https://twitter.com/seb_ruder

      Unsupervised Methods

      博客:http:///

      Twitter:https://twitter.com/RobbieAllen

      Explosion

      博客:https:///blog/

      Twitter:https://twitter.com/explosion_ai

      Tim Dettwers

      博客:http:///

      Twitter:https://twitter.com/Tim_Dettmers

      When trees fall...

      博客:http://blog./

      Twitter:https://twitter.com/tanshawn

      ML@B

      博客:https://ml./blog/

      Twitter:https://twitter.com/berkeleyml

      媒體作家

      以下是一些人工智能領(lǐng)域方向頂尖的媒體作家。

      Robbie Allen:

      https:///@robbieallen

      Erik P.M. Vermeulen:

      https:///@erikpmvermeulen

      Frank Chen:

      https:///@withfries2

      azeem:

      https:///@azeem

      Sam DeBrule:

      https:///@samdebrule

      Derrick Harris:

      https:///@derrickharris

      Yitaek Hwang:

      https:///@yitaek

      samim:

      https:///@samim

      Paul Boutin:

      https:///@Paul_Boutin

      Mariya Yao:

      https:///@thinkmariya

      Rob May:

      https:///@robmay

      Avinash Hindupur:

      https:///@hindupuravinash

      書籍

      以下列出的是關(guān)于機(jī)器學(xué)習(xí)、深度學(xué)習(xí)和自然語(yǔ)言處理的書。這些書都是免費(fèi)的,可以通過(guò)網(wǎng)絡(luò)獲取或者下載。

      機(jī)器學(xué)習(xí)

      Understanding Machine Learning From Theory to Algorithms:

      http://www.cs./~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

      Machine Learning Yearning:

      http://www./

      A Course in Machine Learning:

      http:///

      Machine Learning:

      https://www./books/machine_learning

      Neural Networks and Deep Learning:

      http:///

      Deep Learning Book:

      http://www./

      Reinforcement Learning: An Introduction:

      http:///sutton/book/the-book-2nd.html

      Reinforcement Learning:

      https://www./books/reinforcement_learning

      自然語(yǔ)言處理

      Speech and Language Processing (3rd ed. draft):

      https://web./~jurafsky/slp3/

      Natural Language Processing with Python:

      http://www./book/

      An Introduction to Information Retrieval:

      https://nlp./IR-book/html/htmledition/irbook.html

      數(shù)學(xué)

      Introduction to Statistical Thought:

      http://people.math./~lavine/Book/book.pdf

      Introduction to Bayesian Statistics:

      https://www.stat./~brewer/stats331.pdf

      Introduction to Probability:

      https://www./~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

      Think Stats: Probability and Statistics for Python programmers:

      http:///wp/think-stats-2e/

      The Probability and Statistics Cookbook:

      http:///

      Linear Algebra:

      http://joshua./linearalgebra/book.pdf

      Linear Algebra Done Wrong:

      http://www.math./~treil/papers/LADW/book.pdf

      Linear Algebra, Theory And Applications:

      https://math./~klkuttle/Linearalgebra.pdf

      Mathematics for Computer Science:

      https://courses.csail./6.042/spring17/mcs.pdf

      Calculus:

      https://ocw./ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

      Calculus I for Computer Science and Statistics Students:

      http://www.math./~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

      Quora

      Quora對(duì)于人工智能和機(jī)器學(xué)習(xí)來(lái)說(shuō)是一個(gè)非常好的資源。許多業(yè)界最頂尖的研究者會(huì)對(duì)Quora上某些問(wèn)題進(jìn)行回答。以下,我列舉了主要的人工智能相關(guān)的主題,你可以訂閱如果你想跟進(jìn)這些內(nèi)容。

      Computer-Science (5.6M followers):

      https://www./topic/Computer-Science

      Machine-Learning (1.1M followers):

      https://www./topic/Machine-Learning

      Artificial-Intelligence (635K followers):

      https://www./topic/Artificial-Intelligence

      Deep-Learning (167K followers):

      https://www./topic/Deep-Learning

      Natural-Language-Processing (155K followers):

      https://www./topic/Natural-Language-Processing

      Classification-machine-learning (119K followers):

      https://www./topic/Classification-machine-learning

      Artificial-General-Intelligence (82K followers)

      https://www./topic/Artificial-General-Intelligence

      Convolutional-Neural-Networks-CNNs (25K followers):

      https://www./topic/Artificial-General-Intelligence

      Computational-Linguistics (23K followers):

      https://www./topic/Computational-Linguistics

      Recurrent-Neural-Networks (17.4K followers):

      https://www./topic/Recurrent-Neural-Networks

      Reddit

      Reddit上的人工智能社區(qū)并沒有Quora上的那么大,但是,Reddit上面依然有一些值得關(guān)注的資源。Reddit有助于跟進(jìn)最新的業(yè)界動(dòng)態(tài)和研究進(jìn)展,而Quora便于進(jìn)行問(wèn)答交流。以下通過(guò)關(guān)注量列舉了主要的人工智能領(lǐng)域的subreddits。

      /r/MachineLearning (111K readers):

      https://www./r/MachineLearning

      /r/robotics/ (43K readers):

      https://www./r/robotics/

      /r/artificial (35K readers):

      https://www./r/artificial

      /r/datascience (34K readers):

      https://www./r/datascience

      /r/learnmachinelearning (11K readers):

      https://www./r/learnmachinelearning

      /r/computervision (11K readers):

      https://www./r/computervision

      /r/MLQuestions (8K readers):

      https://www./r/MLQuestions

      /r/LanguageTechnology (7K readers):

      https://www./r/LanguageTechnology

      /r/mlclass (4K readers):

      https://www./r/mlclass

      /r/mlpapers (4K readers):

      https://www./r/mlpapers

      Github

      人工智能領(lǐng)域最令人激動(dòng)的原因之一是大多數(shù)項(xiàng)目都是開源的,而且可以通過(guò)Github獲得。如果你需要一些Python或Jupyter Notebooks實(shí)現(xiàn)的示例算法,在Github上有大量的這類教育資源。

      Machine Learning (6K repos):

      https://github.com/search?o=desc&q=topic%3Amachine-learning &s=stars&type=Repositories&utf8=%E2%9C%93

      Deep Learning (3K repos):

      https://github.com/search?q=topic%3Adeep-learning&type=Repositories

      Tensorflow (2K repos):

      https://github.com/search?q=topic%3Atensorflow&type=Repositories

      Neural Network (1K repos):

      https://github.com/search?q=topic%3Atensorflow&type=Repositories

      NLP (1K repos):

      https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories

      播客

      對(duì)人工智能進(jìn)行報(bào)道的播客數(shù)量在不斷地增加,一部分關(guān)注最新的動(dòng)態(tài),一部分關(guān)注人工智能教育。

      ConcerningAI

      官網(wǎng):

      https:///

      iTunes:

      https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

      This Week in Machine Learning and AI

      官網(wǎng):

      https:///

      iTunes:

      https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

      The AI Podcast

      官網(wǎng):

      https://blogs./ai-podcast/

      iTunes:

      https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

      Data Skeptic

      官網(wǎng):

      http:///

      iTunes:

      https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

      Linear Digressions

      官網(wǎng):

      https://itunes.apple.com/us/podcast/linear-digressions/id941219323

      iTunes:

      https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

      Partially Dervative

      官網(wǎng):

      http:///

      iTunes:

      https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

      O'Reilly Data Show

      官網(wǎng):

      http://radar./tag/oreilly-data-show-podcast

      iTunes:

      https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

      Learning Machines 101

      官網(wǎng):

      http://www./

      iTunes:

      https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

      The Talking Machines

      官網(wǎng):

      http://www./

      iTunes:

      https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

      Artificial Intelligence in Industry

      官網(wǎng):

      http:///

      iTunes:

      https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

      Machine Learning Guide

      官網(wǎng)

      http:///podcasts/machine-learning

      https://itunes.apple...iTunes:

      https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

      時(shí)事通訊媒體

      如果你想了解最新的業(yè)界消息和學(xué)術(shù)進(jìn)展,這里有大量的時(shí)事通訊媒體供你選擇。

      The Exponential View:

      https://www./profile/azeem

      AI Weekly:

      http:///

      Deep Hunt:

      https:///

      O’Reilly Artificial Intelligence Newsletter:

      http://www./ai/newsletter.html

      Machine Learning Weekly:

      http:///

      Data Science Weekly Newsletter:

      https://www./

      Machine Learnings:

      http://subscribe./

      Artificial Intelligence News:

      http:///

      When trees fall…:

      https:///p/GVBR82UWhWb9

      WildML:

      https:///p/PoZVx95N9RGV

      Inside AI:

      https:///technically-sentient

      Kurzweil AI:

      http://www./create-account

      Import AI:

      https:///import-ai/

      The Wild Week in AI:

      https://www./profile/wildml

      Deep Learning Weekly:

      http://www./

      Data Science Weekly:

      https://www./

      KDnuggets Newsletter:

      http://www./news/subscribe.html?qst

      會(huì)議

      隨著人工智能的崛起,與人工智能相關(guān)的會(huì)議也在逐漸增加。這里列舉一些主要的會(huì)議。

      學(xué)術(shù)會(huì)議

      NIPS (Neural Information Processing Systems):

      https:///

      ICML (International Conference on Machine Learning):

      https://2017.

      KDD (Knowledge Discovery and Data Mining):

      http://www./

      ICLR (International Conference on Learning Representations):

      http://www./

      ACL (Association for Computational Linguistics):

      http:///

      EMNLP (Empirical Methods in Natural Language Processing):

      http:///

      CVPR (Computer Vision and PatternRecognition):

      http://cvpr2017./

      ICCF(InternationalConferenceonComputerVision):

      http://iccv2017./

      專業(yè)會(huì)議

      O’Reilly Artificial Intelligence Conference:

      https://conferences./artificial-intelligence/

      Machine Learning Conference (MLConf):

      http:///

      AI Expo (North America, Europe, World):

      https://www./

      AI Summit:

      https:///

      AI Conference:

      https://aiconference./helloworld/

      論文

      arXiv.org上特定領(lǐng)域論文集:

      Artificial Intelligence:

      https:///list/cs.AI/recent

      Learning (Computer Science):

      https:///list/cs.LG/recent

      Machine Learning (Stats):

      https:///list/stat.ML/recent

      NLP:

      https:///list/cs.CL/recent

      Computer Vision:

      https:///list/cs.CV/recent

      Semantic Scholar搜索結(jié)果:

      Neural Networks (179K results):

      https://www./search?q=%22neural%20networks%22&sort=relevance&ae=false

      Machine Learning (94K results):

      https://www./search?q=%22machine%20learning%22&sort=relevance&ae=false

      Natural Language (62K results):

      https://www./search?q=%22natural%20language%22&sort=relevance&ae=false

      Computer Vision (55K results):

      https://www./search?q=%22natural%20language%22&sort=relevance&ae=false

      Deep Learning (24K results):

      https://www./search?q=%22deep%20learning%22&sort=relevance&ae=false

      此外,一個(gè)很好的資源是Andrej Karpathy維護(hù)的一個(gè)用于搜索論文的項(xiàng)目。

      http://www./

      作者:Robbie Allen

      原文:https:///my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多