2018年1月份,國(guó)家教育部發(fā)布了《普通高中課程方案和全部學(xué)科課程標(biāo)準(zhǔn)(2017年版)》。 2003年印發(fā)的普通高中課程方案和課程標(biāo)準(zhǔn)實(shí)驗(yàn)稿,指導(dǎo)了十余年的高中課程改革實(shí)踐,在全面推進(jìn)素質(zhì)教育中發(fā)揮了重要作用,但是,面對(duì)社會(huì)經(jīng)濟(jì)、科技文化發(fā)生的巨大變化,對(duì)人才培養(yǎng)提出的更高要求,還有一些不相適應(yīng)和亟待改進(jìn)之處,需要進(jìn)行修訂完善。 由于原文較長(zhǎng),在此節(jié)選第三、第四部分的內(nèi)容,以供各位參考,纖細(xì)內(nèi)容請(qǐng)點(diǎn)擊文章末尾的閱讀原文到學(xué)科網(wǎng)下載! 三、課程結(jié)構(gòu) (一)設(shè)計(jì)依據(jù) 1.依據(jù)高中數(shù)學(xué)課程理念,實(shí)現(xiàn)“人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展”,促進(jìn)學(xué)生數(shù)學(xué)學(xué)科核心素養(yǎng)的形成和發(fā)展。 2.依據(jù)高中課程方案,借鑒國(guó)際經(jīng)驗(yàn),體現(xiàn)課程改革成果,調(diào)整課程結(jié)構(gòu),改進(jìn)學(xué)業(yè)質(zhì)量評(píng)價(jià)。 3.依據(jù)高中數(shù)學(xué)課程性質(zhì),體現(xiàn)課程的基礎(chǔ)性、選擇性和發(fā)展性,為全體學(xué)生提供共同基礎(chǔ),為滿足學(xué)生的不同志趣和發(fā)展提供豐富多樣的課程。學(xué)科=網(wǎng) 4.依據(jù)數(shù)學(xué)學(xué)科特點(diǎn),關(guān)注數(shù)學(xué)邏輯體系、內(nèi)容主線、知識(shí)之間的關(guān)聯(lián),重視數(shù)學(xué)實(shí)踐和數(shù)學(xué)文化。 (二)結(jié)構(gòu) 高中數(shù)學(xué)課程分為必修課程、選擇性必修課程和選修課程。高中數(shù)學(xué)課程內(nèi)容突出函數(shù)、幾何與代數(shù)、概率與統(tǒng)計(jì)、數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng)四條主線,它們貫穿必修、選擇性必修和選修課程。數(shù)學(xué)文化融入課程內(nèi)容。高中數(shù)學(xué)課程結(jié)構(gòu)如下: 說(shuō)明:數(shù)學(xué)文化是指數(shù)學(xué)的思想、精神、語(yǔ)言、方法、觀點(diǎn),以及它們的形成和發(fā)展;還包括數(shù)學(xué)在人類生活、科學(xué)技術(shù)、社會(huì)發(fā)展中的貢獻(xiàn)和意義,以及與數(shù)學(xué)相關(guān)的人文活動(dòng)。 (三)學(xué)分與選課 1.學(xué)分設(shè)置 必修課程8學(xué)分,選擇性必修課程6學(xué)分,選修課程6 學(xué)分。 選修課程的分類、內(nèi)容及學(xué)分如下。學(xué)科!網(wǎng) A 類課程包括微積分、空間向量與代數(shù)、概率與統(tǒng)計(jì)三個(gè)專題,其中微積分2.5學(xué)分,空間向量與代數(shù)2學(xué)分,概率與統(tǒng)計(jì)1.5 學(xué)分。供有志于學(xué)習(xí)數(shù)理類(如數(shù)學(xué)、物理、計(jì)算機(jī)、精密儀器等)專業(yè)的學(xué)生選擇。 B類課程包括微積分、空間向量與代數(shù)、應(yīng)用統(tǒng)計(jì)、模型四個(gè)專題,其中微積分2學(xué)分,空間向量與代數(shù)1學(xué)分,應(yīng)用統(tǒng)計(jì)2學(xué)分,模型1學(xué)分。供有志于學(xué)習(xí)經(jīng)濟(jì)、社會(huì)類(如數(shù)理經(jīng)濟(jì)、社會(huì)學(xué)等)和部分理工類(如化學(xué)、生物、機(jī)械等) 專業(yè)的學(xué)生選擇。 C 類課程包括邏輯推理初步、數(shù)學(xué)模型、社會(huì)調(diào)查與數(shù)據(jù)分析三個(gè)專題,每個(gè)專題2學(xué)分。供有志于學(xué)習(xí)人文類(如語(yǔ)言、歷史等)專業(yè)的學(xué)生選擇。 D類課程包括美與數(shù)學(xué)、音樂(lè)中的數(shù)學(xué)、美術(shù)中的數(shù)學(xué)、體育運(yùn)動(dòng)中的數(shù)學(xué)四個(gè)專題,每個(gè)專題1學(xué)分。供有志于學(xué)習(xí)體育、藝術(shù)(包括音樂(lè)、美術(shù)) 類等專業(yè)的學(xué)生選擇。 E 類課程包括拓展視野、日常生活、地方特色的數(shù)學(xué)課程,還包括大學(xué)數(shù)學(xué)先修課程等。大學(xué)數(shù)學(xué)先修課程包括三個(gè)專題:微積分、解析幾何與線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì),每個(gè)專題6 學(xué)分。 2.課理定位 必修課程為學(xué)生發(fā)展提供共同基礎(chǔ)。是高中畢業(yè)的數(shù)學(xué)學(xué)業(yè)水平考試的內(nèi)容要求,也是高考的內(nèi)容要求。 選擇性必修課程是供學(xué)生選擇的課程,也是高考的內(nèi)容要求。 選修課程為學(xué)生確定發(fā)展方向提供引導(dǎo),為學(xué)生展示數(shù)學(xué)才能提供平臺(tái),為學(xué)生發(fā)展數(shù)學(xué)興趣提供選擇,為大學(xué)自主招生提供參考。 3.選課說(shuō)明 如果學(xué)生以高中畢業(yè)為目標(biāo),可以只學(xué)習(xí)必修課程,參加高中畢業(yè)的數(shù)學(xué)學(xué)業(yè)水平考試。 如果學(xué)生計(jì)劃通過(guò)參加高考進(jìn)入高等學(xué)校學(xué)習(xí),必須學(xué)習(xí)必修課程和選擇性必修課程。參加數(shù)學(xué)高考。 如果學(xué)生在上述選擇的基礎(chǔ)上,還希望多學(xué)習(xí)一些數(shù)學(xué)課程,可以在選擇性必修課程或選修課程中,根據(jù)自身未來(lái)發(fā)展的需求進(jìn)行選擇。 在選修課程中可以選擇某一類課程,例如,A 類課程; 也可以選擇某類課程中的某個(gè)專題,例如,E 類大學(xué)先修課程中的微積分;還可以選擇某些專題的組合,例如,D 類課程中的美與數(shù)學(xué)、C類課程中的社會(huì)調(diào)查與數(shù)據(jù)分析等. 四、課程內(nèi)容 (一)必修課程 必修課程包括五個(gè)主題,分別是預(yù)備知識(shí)、函數(shù)、幾何與代數(shù)、概率與統(tǒng)計(jì)、數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng)。數(shù)學(xué)文化融入課程內(nèi)容。 必修課程共8學(xué)分144課時(shí),表1給出了課時(shí)分配建議,教材編寫、教學(xué)實(shí)施時(shí)可以根據(jù)實(shí)際作適當(dāng)調(diào)整。 主題一 預(yù)備知識(shí) 以義務(wù)教育階段數(shù)學(xué)課程內(nèi)容為載體,結(jié)合集合、常用邏輯用語(yǔ)、相等關(guān)系與不等關(guān)系、從函數(shù)觀點(diǎn)看一元二次方程和一元二次不等式等內(nèi)容的學(xué)習(xí),為高中數(shù)學(xué)課程做好學(xué)習(xí)心理、學(xué)習(xí)方式和知識(shí)技能等方面的準(zhǔn)備,幫助學(xué)生完成初高中數(shù)學(xué)學(xué)習(xí)的過(guò)渡。 【內(nèi)容要求】 內(nèi)容包括:集合、常用邏輯用語(yǔ)、相等關(guān)系與不等關(guān)系、從函數(shù)觀點(diǎn)看一元二次方程和一元二次不等式。 1.集合 在高中數(shù)學(xué)課程中,集合是刻畫(huà)一類事物的語(yǔ)言和工具。本單元的學(xué)習(xí),可以幫助學(xué)生使用集合的語(yǔ)言簡(jiǎn)潔、準(zhǔn)確地表述數(shù)學(xué)的研究對(duì)象,學(xué)會(huì)用數(shù)學(xué)的語(yǔ)言表達(dá)和交流,積累數(shù)學(xué)抽象的經(jīng)驗(yàn)。 內(nèi)容包括:集合的概念與表示、集合的基本關(guān)系、集合的基本運(yùn)算。 (1)集合的概念與表示 ①通過(guò)實(shí)例,了解集合的含義,理解元素與集合的“屬于”關(guān)系。 ②針對(duì)具體問(wèn)題,能夠在自然語(yǔ)言和圖形語(yǔ)言的基礎(chǔ)上,用符號(hào)語(yǔ)言刻畫(huà)集合。 ③在具體情境中,了解全集與空集的含義。學(xué)+科網(wǎng) (2)集合的基本關(guān)系 理解集合之間包含與相等的含義,能識(shí)別給定集合的子集。 (3)集合的基本運(yùn)算 ①理解兩個(gè)集合的并集與交集的含義,能求兩個(gè)集合的并集與交集。 ②理解在給定集合中一個(gè)子集的補(bǔ)集的含義,能求給定子集的補(bǔ)集。 ③能使用Venn圖表達(dá)集合的基本關(guān)系與基本運(yùn)算,體會(huì)圖形對(duì)理解抽象概念的作用。 2.常用邏輯用語(yǔ) 常用邏輯用語(yǔ)是數(shù)學(xué)語(yǔ)言的重要組成部分,是數(shù)學(xué)表達(dá)和交流的工具,是邏輯思維的基本語(yǔ)言。本單元的學(xué)習(xí),可以幫助學(xué)生使用常用邏輯用語(yǔ)表達(dá)數(shù)學(xué)對(duì)象,進(jìn)行數(shù)學(xué)推理,體會(huì)常用邏輯用語(yǔ)在表述數(shù)學(xué)內(nèi)容和論證數(shù)學(xué)結(jié)論中的作用,提升交流的嚴(yán)謹(jǐn)性與準(zhǔn)確性。 內(nèi)容包括:必要條件、充分條件、充要條件,全稱量詞、存在量詞、全稱量詞命題與存在量詞命題的否定。 (1)必要條件、充分條件、充要條件 ①通過(guò)對(duì)典型數(shù)學(xué)命題的梳理,理解必要條件的意義,理解性質(zhì)定理與必要條件的關(guān)系。 ②通過(guò)對(duì)典型數(shù)學(xué)命題的梳理,理解充分條件的意義,理解判定定理與充分條件的關(guān)系。 ③通過(guò)對(duì)典型數(shù)學(xué)命題的梳理,理解充要條件的意義,理解數(shù)學(xué)定義與充要條件的關(guān)系。 (2)全稱量詞與存在量詞 通過(guò)已知的數(shù)學(xué)實(shí)例,理解全稱量詞與存在量詞的意義。 (3)全稱量詞命題與存在量詞命題的否定 ①能正確使用存在量詞對(duì)全稱量詞命題進(jìn)行否定。 ②能正確使用全稱量詞對(duì)存在量詞命題進(jìn)行否定。 3.相等關(guān)系與不等關(guān)系 相等關(guān)系、不等關(guān)系是數(shù)學(xué)中最基本的數(shù)量關(guān)系,是構(gòu)建方程、不等式的基礎(chǔ)。本單元的學(xué)習(xí),可以幫助學(xué)生通過(guò)類比,理解等式和不等式的共性與差異,掌握基本不等式。 內(nèi)容包括:等式與不等式的性質(zhì)、基本不等式。 (1)等式與不等式的性質(zhì) 梳理等式的性質(zhì),理解不等式的概念,掌握不等式的性質(zhì)。 (2)基本不等式 理解基本不等式。結(jié)合具體實(shí)例,能用基本不等式解決簡(jiǎn)單的求最大值或最小值的問(wèn)題。 4.從函數(shù)觀點(diǎn)看一元二次方程和一元二次不等式 用函數(shù)理解方程和不等式是數(shù)學(xué)的基本思想方法。本單元的學(xué)習(xí),可以幫助學(xué)生用一元二次函數(shù)認(rèn)識(shí)一元二次方程和一元二次不等式。通過(guò)梳理初中數(shù)學(xué)的相關(guān)內(nèi)容,理解函數(shù)、方程和不等式之間的聯(lián)系,體會(huì)數(shù)學(xué)的整體性。 內(nèi)容包括:從函數(shù)觀點(diǎn)看一元二次方程、從函數(shù)觀點(diǎn)看一元二次不等式。 (1)從函數(shù)觀點(diǎn)看一元二次方程 會(huì)結(jié)合一元二次函數(shù)的圖象,判斷一元二次方程實(shí)根的存在性及根的個(gè)數(shù),了解函數(shù)的零點(diǎn)與方程根的關(guān)系。 (2)從函數(shù)觀點(diǎn)看一元二次不等式 ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式的過(guò)程,了解一元二次不等式的現(xiàn)實(shí)意義;能夠借助一元二次函數(shù)求解一元二次不等式;并能用集合表示一元二次不等式的解集。 ②借助一元二次函數(shù)的圖象,了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系(參見(jiàn)案例1)。 【學(xué)業(yè)要求】 能夠在現(xiàn)實(shí)情境或數(shù)學(xué)情境中,概括出數(shù)學(xué)對(duì)象的一般特征,并用集合語(yǔ)言予以表達(dá)。初步學(xué)會(huì)用三種語(yǔ)言(自然語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言)表達(dá)數(shù)學(xué)研究對(duì)象,并能進(jìn)行轉(zhuǎn)換。掌握集合的基本關(guān)系與基本運(yùn)算。在數(shù)學(xué)表達(dá)中的作用。 能夠從函數(shù)的觀點(diǎn)認(rèn)識(shí)方程和不等式,感悟函數(shù)學(xué)知識(shí)之間的關(guān)聯(lián),認(rèn)識(shí)函數(shù)的重要性。掌握等式與不等式的性質(zhì)。 重點(diǎn)提升數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng)。 主題二 函數(shù) 函數(shù)是現(xiàn)代數(shù)學(xué)中最基本的概念,是描述客觀世界中變量關(guān)系和規(guī)律的最為基本的數(shù)學(xué)語(yǔ)言和工具,在解決實(shí)際問(wèn)題匯總發(fā)揮重要作用。函數(shù)是貫穿高中數(shù)學(xué)課程的主線。 【內(nèi)容要求】 內(nèi)容包括:函數(shù)概念與性質(zhì),冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù),三角函數(shù),函數(shù)應(yīng)用。 1.函數(shù)概念與性質(zhì) 本單元的學(xué)習(xí),可以幫助學(xué)生建立完整的函數(shù)概念,不僅把函數(shù)理解為刻畫(huà)變量之間依賴關(guān)系的數(shù)學(xué)語(yǔ)言和工具,也把函數(shù)理解為實(shí)數(shù)集合之間的對(duì)應(yīng)關(guān)系;能用代數(shù)運(yùn)算和函數(shù)圖象揭示函數(shù)的主要性質(zhì);在現(xiàn)實(shí)問(wèn)題中,能利用函數(shù)構(gòu)建模型,解決問(wèn)題。 內(nèi)容包括:函數(shù)概念、函數(shù)性質(zhì)、*[1]函數(shù)的形成與發(fā)展。 (1)函數(shù)概念 ①在初中用變量之間的依賴關(guān)系描述函數(shù)的基礎(chǔ)上,用集合語(yǔ)言和對(duì)應(yīng)關(guān)系刻畫(huà)函數(shù),建立完整的函數(shù)概念(參見(jiàn)案例2),體會(huì)集合語(yǔ)言和對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。了解構(gòu)成函數(shù)的要素,能求簡(jiǎn)單函數(shù)的定義域。 ②在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù),理解函數(shù)圖象的作用。 ③通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用。 (2)函數(shù)性質(zhì) ①借助函數(shù)圖象,會(huì)用符號(hào)語(yǔ)言表達(dá)函數(shù)的單調(diào)性、最大值、最小值,理解它們的作用和實(shí)際意義。 ②結(jié)合具體函數(shù),了解奇偶性的概念和幾何意義。 ③結(jié)合三角函數(shù),了解周期性的概念和幾何意義。 (3)*函數(shù)的形成與發(fā)展([1]標(biāo)有*的內(nèi)容為選學(xué)內(nèi)容,不作為考試要求。) 收集函數(shù)概念的形成與發(fā)展的歷史資料,撰寫論文,論述函數(shù)發(fā)展的過(guò)程、重要結(jié)果、主要人物、關(guān)鍵事件及其對(duì)人類文明的貢獻(xiàn)。 2.冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù) 冪函數(shù)、指數(shù)函數(shù)與對(duì)數(shù)函數(shù)是最基本的、應(yīng)用最廣泛的函數(shù),是進(jìn)一步研究數(shù)學(xué)的基礎(chǔ)。本單元的學(xué)習(xí),可以幫助學(xué)生學(xué)會(huì)用函數(shù)圖象和代數(shù)運(yùn)算的方法研究這些函數(shù)的性質(zhì);理解這些函數(shù)中所蘊(yùn)含的運(yùn)算規(guī)律;運(yùn)用這些函數(shù)建立模型,解決簡(jiǎn)單的實(shí)際問(wèn)題,體會(huì)這些函數(shù)在解決實(shí)際問(wèn)題中的作用。 內(nèi)容包括:冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)。 (1)冪函數(shù) 通過(guò)具體實(shí)例,結(jié)合的圖象,理解它們的變化規(guī)律,了解冪函數(shù)。 (2)指數(shù)函數(shù) ①通過(guò)對(duì)有理指數(shù)冪 、實(shí)數(shù)指數(shù)冪(a>0,且,a≠1,x∈R)含義的認(rèn)識(shí),了解指數(shù)冪的拓展過(guò)程,掌握指數(shù)冪的運(yùn)算性質(zhì)。 ②通過(guò)具體實(shí)例,了解指數(shù)函數(shù)的實(shí)際意義,理解指數(shù)函數(shù)的概念。 ③能用描點(diǎn)法或借助計(jì)算工具畫(huà)出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。 (3)對(duì)數(shù)函數(shù) ①理解對(duì)數(shù)的概念和運(yùn)算性質(zhì),知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù)。 ②通過(guò)具體實(shí)例,了解對(duì)數(shù)函數(shù)的概念。能用描點(diǎn)法或借助計(jì)算工具畫(huà)出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。 ③知道對(duì)數(shù)函數(shù)與指數(shù)函數(shù) 互為反函數(shù)(a>0,且a≠1)?!?/p> ④*收集、閱讀對(duì)數(shù)概念的形成與發(fā)展的歷史資料,撰寫小論文,論述對(duì)數(shù)發(fā)明 的過(guò)程以及對(duì)數(shù)對(duì)簡(jiǎn)化運(yùn)算的作用。 3.三角函數(shù) 三角函數(shù)是一類最典型的周期函數(shù)。本單元的學(xué)習(xí),可以幫助學(xué)生在用銳角三角函數(shù)刻畫(huà)直角三角形中邊角關(guān)系的基礎(chǔ)上,借助單位圓建立一般三角函數(shù)的概念,體會(huì)引入弧度制的必要性;用幾何直觀和代數(shù)運(yùn)算的方法研究三角函數(shù)的周期性、奇偶性(對(duì)稱性)、單調(diào)性和最大(小)值等性質(zhì);探索和研究三角函數(shù)之間的一些恒等關(guān)系;利用三角函數(shù)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題。 內(nèi)容包括:角與弧度、三角函數(shù)概念和性質(zhì)、同角三角函數(shù)的基本關(guān)系式、三角恒等變換、三角函數(shù)應(yīng)用。 (1)角與弧度 了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化,體會(huì)引入弧度制的必要性(參見(jiàn)案例3)。 (2)三角函數(shù)概念和性質(zhì) ①借助單位圓理解任意角三角函數(shù)(正弦、余弦、正切)的定義,能畫(huà)出這些三角函數(shù)的圖象,了解三角函數(shù)的周期性、奇偶性、最大(小)值。借助單位圓的對(duì)稱性,利用定義推導(dǎo)出誘導(dǎo)公式(α ±,α ±π的正弦、余弦、正切)。 ②借助圖象理解正弦函數(shù)在、余弦函數(shù)上、正切函數(shù)在 上的性質(zhì)。 ③結(jié)合具體實(shí)例,了解的實(shí)際意義;能借助圖象理解參數(shù)ω,φ,A的意義,了解參數(shù)的變化對(duì)函數(shù)圖象的影響。學(xué)科!網(wǎng) (3)同角三角函數(shù)的基本關(guān)系式 理解同角三角函數(shù)的基本關(guān)系式。 (4)三角恒等變換 ①經(jīng)歷推導(dǎo)兩角差余弦公式的過(guò)程,知道兩角差余弦公式的意義。 ②能從兩角差的余弦公式推導(dǎo)出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。 ③能運(yùn)用上述公式進(jìn)行簡(jiǎn)單的恒等變換(包括推導(dǎo)出積化和差、和差化積、半角公式,這三組公式不要求記憶)。 (5)三角函數(shù)應(yīng)用 會(huì)用三角函數(shù)解決簡(jiǎn)單的實(shí)際問(wèn)題,體會(huì)可以利用三角函數(shù)構(gòu)建刻畫(huà)事物周期變化的數(shù)學(xué)模型(參見(jiàn)案例4)。 4.函數(shù)應(yīng)用 函數(shù)應(yīng)用不僅體現(xiàn)在用函數(shù)解決數(shù)學(xué)問(wèn)題,更重要的是用函數(shù)解決實(shí)際問(wèn)題。本單元的學(xué)習(xí),可以幫助學(xué)生掌握運(yùn)用函數(shù)性質(zhì)求方程近似解的基本方法(二分法);理解用函數(shù)構(gòu)建數(shù)學(xué)模型的基本過(guò)程;運(yùn)用模型思想發(fā)現(xiàn)和提出、分析和解決問(wèn)題。 內(nèi)容包括:二分法與求方程近似解、函數(shù)與數(shù)學(xué)模型。 (1)二分法與求方程近似解 ①結(jié)合學(xué)過(guò)的函數(shù)圖象,了解函數(shù)的零點(diǎn)與方程解的關(guān)系。 ②結(jié)合具體連續(xù)函數(shù)及其圖象的特點(diǎn),了解函數(shù)零點(diǎn)存在定理,探索用二分法求方程近似解的思路并會(huì)畫(huà)程序框圖,能借助計(jì)算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性。 (2)函數(shù)與數(shù)學(xué)模型 ①理解函數(shù)是描述客觀世界中變量關(guān)系和規(guī)律的重要數(shù)學(xué)語(yǔ)言和工具。在實(shí)際情境中,會(huì)選擇合適的函數(shù)類型刻畫(huà)現(xiàn)實(shí)問(wèn)題的變化規(guī)律。 ②結(jié)合現(xiàn)實(shí)情境中的具體問(wèn)題,利用計(jì)算工具,比較對(duì)數(shù)函數(shù)、一元一次函數(shù)、指數(shù)函數(shù)增長(zhǎng)速度的差異,理解“對(duì)數(shù)增長(zhǎng)”“直線上升”“指數(shù)爆炸”等術(shù)語(yǔ)的現(xiàn)實(shí)含義。 ③收集、閱讀一些現(xiàn)實(shí)生活、生產(chǎn)實(shí)際或者經(jīng)濟(jì)領(lǐng)域中的數(shù)學(xué)模型,體會(huì)人們是如何借助函數(shù)刻畫(huà)實(shí)際問(wèn)題的,感悟數(shù)學(xué)模型中參數(shù)的現(xiàn)實(shí)意義。 【學(xué)業(yè)要求】 能夠從兩個(gè)變量之間的依賴關(guān)系、實(shí)數(shù)集合之間的對(duì)應(yīng)關(guān)系、函數(shù)圖象的幾何直觀等多個(gè)角度,理解函數(shù)的意義與數(shù)學(xué)表達(dá);理解函數(shù)符號(hào)表達(dá)與抽象定義之間的關(guān)聯(lián),知道函數(shù)抽象概念的意義。 能夠理解函數(shù)的單調(diào)性、最大(?。┲?,了解函數(shù)的奇偶性、周期性;掌握一些基本函數(shù)類(一元一次函數(shù)、反比例函數(shù)、一元二次函數(shù)、冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)等)的背景、概念和性質(zhì)。 能夠?qū)?jiǎn)單的實(shí)際問(wèn)題,選擇適當(dāng)?shù)暮瘮?shù)構(gòu)建數(shù)學(xué)模型,解決問(wèn)題;能夠從函數(shù)的觀點(diǎn)認(rèn)識(shí)方程,并運(yùn)用函數(shù)的性質(zhì)求方程的近似解;能夠從函數(shù)觀點(diǎn)認(rèn)識(shí)不等式,并運(yùn)用函數(shù)的性質(zhì)解不等式。 重點(diǎn)提升數(shù)學(xué)抽象、數(shù)學(xué)建模、數(shù)學(xué)運(yùn)算、直觀想象和邏輯推理素養(yǎng)。 主題三 幾何與代數(shù) 幾何與代數(shù)是高中數(shù)學(xué)課程的主線之一。在必修課程與選擇性必修課程中,突出幾何直觀與代數(shù)運(yùn)算之間的融合,即通過(guò)形與數(shù)的結(jié)合,感悟數(shù)學(xué)知識(shí)之間的關(guān)聯(lián),加強(qiáng)對(duì)數(shù)學(xué)整體性的理解。 【內(nèi)容標(biāo)準(zhǔn)】 內(nèi)容包括:平面向量及其應(yīng)用、復(fù)數(shù)、立體幾何初步。 1.平面向量及應(yīng)用 向量理論具有深刻的數(shù)學(xué)內(nèi)涵、豐富的物理背景。向量既是代數(shù)研究對(duì)象,也是幾何研究對(duì)象,是溝通幾何與代數(shù)的橋梁。向量是描述直線、曲線、平面、曲面以及高維空間數(shù)學(xué)問(wèn)題的基本工具,是進(jìn)一步學(xué)習(xí)和研究其他數(shù)學(xué)領(lǐng)域問(wèn)題的基礎(chǔ),在解決實(shí)際問(wèn)題中發(fā)揮重要作用。本單元的學(xué)習(xí),可以幫助學(xué)生理解平面向量的幾何意義和代數(shù)意義;掌握平面向量的概念、運(yùn)算、向量基本定理以及向量的應(yīng)用;用向量語(yǔ)言、方法表述和解決現(xiàn)實(shí)生活、數(shù)學(xué)和物理中的問(wèn)題。 內(nèi)容包括:向量概念、向量運(yùn)算、向量基本定理及坐標(biāo)表示、向量應(yīng)用。 (1)向量概念 ①通過(guò)對(duì)力、速度、位移等的分析,了解平面向量的實(shí)際背景,理解平面向量的意義和兩個(gè)向量相等的含義。 ②理解平面向量的幾何表示和基本要素。 (2)向量運(yùn)算 ①借助實(shí)例和平面向量的幾何表示,掌握平面向量加、減運(yùn)算及運(yùn)算規(guī)則,理解其幾何意義。 ②通過(guò)實(shí)例分析,掌握平面向量數(shù)乘運(yùn)算及運(yùn)算規(guī)則,理解其幾何意義。理解兩個(gè)平面向量共線的含義。 ③了解平面向量的線性運(yùn)算性質(zhì)及其幾何意義。 ④通過(guò)物理中功等實(shí)例,理解平面向量數(shù)量積的概念及其物理意義,會(huì)計(jì)算平面向量的數(shù)量積。 ⑤通過(guò)幾何直觀,了解平面向量投影的概念以及投影向量的意義(參見(jiàn)案例9)。 ⑥會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。 (3)向量基本定理及坐標(biāo)表示 ①理解平面向量基本定理及其意義。 ②借助平面直角坐標(biāo)系,掌握平面向量的正交分解及坐標(biāo)表示。 ③會(huì)用坐標(biāo)表示平面向量的加、減運(yùn)算與數(shù)乘運(yùn)算。 ④能用坐標(biāo)表示平面向量的數(shù)量積,會(huì)表示兩個(gè)平面向量的夾角。 ⑤能用坐標(biāo)表示平面向量共線、垂直的條件。 (4)向量應(yīng)用與解三角形 ①會(huì)用向量方法解決簡(jiǎn)單的平面幾何問(wèn)題、力學(xué)問(wèn)題以及其他實(shí)際問(wèn)題,體會(huì)向量在解決數(shù)學(xué)和實(shí)際問(wèn)題中的作用。 ②借助向量的運(yùn)算,探索三角形邊長(zhǎng)與角度的關(guān)系,掌握余弦定理、正弦定理。 ③能用余弦定理、正弦定理解決簡(jiǎn)單的實(shí)際問(wèn)題。 2.復(fù)數(shù) 復(fù)數(shù)是一類重要的運(yùn)算對(duì)象,有廣泛的應(yīng)用。本單元的學(xué)習(xí),可以幫助學(xué)生通過(guò)方程求解,理解引入復(fù)數(shù)的必要性,了解數(shù)系的擴(kuò)充,掌握復(fù)數(shù)的表示、運(yùn)算及其幾何意義。 內(nèi)容包括:復(fù)數(shù)的概念、復(fù)數(shù)的運(yùn)算、*復(fù)數(shù)的三角表示。 (1)復(fù)數(shù)的概念 ①通過(guò)方程的解,認(rèn)識(shí)復(fù)數(shù)。 ②理解復(fù)數(shù)的代數(shù)表示及其幾何意義,理解兩個(gè)復(fù)數(shù)相等的含義。 (2)復(fù)數(shù)的運(yùn)算 掌握復(fù)數(shù)代數(shù)表示的四則運(yùn)算,了解復(fù)數(shù)加、減運(yùn)算的幾何意義。 (3)*復(fù)數(shù)的三角表示 通過(guò)復(fù)數(shù)的幾何意義,了解復(fù)數(shù)的三角表示,了解復(fù)數(shù)的代數(shù)形式與三角表示之間的關(guān)系,了解復(fù)數(shù)乘、除運(yùn)算的三角表示及其幾何意義。 3.立體幾何初步 立體幾何研究現(xiàn)實(shí)世界中物體的形狀、大小與位置關(guān)系。本單元的學(xué)習(xí),可以幫助學(xué)生以長(zhǎng)方體為載體,認(rèn)識(shí)和理解空間點(diǎn)、直線、平面的位置關(guān)系;用數(shù)學(xué)語(yǔ)言表述有關(guān)平行、垂直的性質(zhì)與判定,并對(duì)某些結(jié)論進(jìn)行論證;了解一些簡(jiǎn)單幾何體的表面積與體積的計(jì)算方法;運(yùn)用直觀感知、操作確認(rèn)、推理論證、度量計(jì)算等認(rèn)識(shí)和探索空間圖形的性質(zhì),建立空間觀念。 內(nèi)容包括:基本立體圖形、基本圖形位置關(guān)系、*幾何學(xué)的發(fā)展。 (1)基本立體圖形 ①利用實(shí)物、計(jì)算機(jī)軟件等觀察空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及簡(jiǎn)單組合體的結(jié)構(gòu)特征,能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。 ②知道球、棱柱、棱錐、棱臺(tái)的表面積和體積的計(jì)算公式,能用公式解決簡(jiǎn)單的實(shí)際問(wèn)題。 ③能用斜二測(cè)法畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱及其簡(jiǎn)單組合)的直觀圖。 (2)基本圖形位置關(guān)系 ①借助長(zhǎng)方體,在直觀認(rèn)識(shí)空間點(diǎn)、直線、平面的位置關(guān)系的基礎(chǔ)上,抽象出空間點(diǎn)、直線、平面的位置關(guān)系的定義,了解以下基本事實(shí)(基本事實(shí)1~4也稱公理)和定理。 基本事實(shí)1:過(guò)不在一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。 基本事實(shí)2:如果一條直線上的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi)。 基本事實(shí)3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。 基本事實(shí)4:平行于同一條直線的兩條直線平行。 定理:如果空間中兩個(gè)角的兩條邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。 ②從上述定義和基本事實(shí)出發(fā),借助長(zhǎng)方體,通過(guò)直觀感知,了解空間中直線與直線、直線與平面、平面與平面的平行和垂直的關(guān)系,歸納出以下判定定理,并加以證明。 ◆一條直線與一個(gè)平面平行,如果過(guò)該直線的平面與此平面相交,那么該直線與交線平行。 ◆兩個(gè)平面平行,若果另一個(gè)平面與這兩個(gè)平面相交,那么兩條交線平行。 ◆垂直于同一個(gè)平面的兩條直線平行。 ◆兩個(gè)平面垂直,如果一個(gè)平面內(nèi)有一條直線垂直于這兩個(gè)平面的交線,那么這條直線與另一個(gè)平面垂直。學(xué)科+網(wǎng) ③從上述定義和基本事實(shí)出發(fā),借助長(zhǎng)方體,通過(guò)直觀感知,了解空間中直線與直線、直線與平面、平面與平面的平行和垂直的關(guān)系,歸納出以下性質(zhì)定理,并加以證明。 ◆若果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行。 ◆如果一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,那么這兩個(gè)平面平行。 ◆如果一條直線與一個(gè)平面內(nèi)的兩條相交直線垂直,那么該直線與此平面垂直。 ◆如果一個(gè)平面過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面垂直。 ④能用已獲得的結(jié)論證明空間基本圖形位置關(guān)系的簡(jiǎn)單命題。 (3)*幾何學(xué)的發(fā)展 收集、閱讀幾何發(fā)展的歷史資料,撰寫小論文,論述幾何發(fā)展的過(guò)程、重要結(jié)果、主要人物、關(guān)鍵事件及其對(duì)人類文明的貢獻(xiàn)。 【學(xué)業(yè)要求】 能夠從多種角度理解向量概念和運(yùn)算法則,掌握向量基本定理;能夠運(yùn)用向量運(yùn)算解決簡(jiǎn)單的幾何和物理問(wèn)題,知道數(shù)學(xué)運(yùn)算與邏輯推理的關(guān)系。 能夠理解復(fù)數(shù)的概念,掌握復(fù)數(shù)代數(shù)表示式的四則運(yùn)算。 能夠通過(guò)直觀圖理解空間圖形,掌握基本空間圖形及其簡(jiǎn)單組合體的概念和基本特征,解決簡(jiǎn)單的實(shí)際問(wèn)題。能夠運(yùn)用圖形的概念描述圖形的基本關(guān)系和基本結(jié)果。能夠證明簡(jiǎn)單的幾何命題(平行、垂直的性質(zhì)定理),并會(huì)進(jìn)行簡(jiǎn)單應(yīng)用。 重點(diǎn)提升直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算和教學(xué)抽象素養(yǎng)。 主題四 概率與統(tǒng)計(jì) 概率的研究對(duì)象是隨機(jī)現(xiàn)象,為人們從不確定性的角度認(rèn)識(shí)客觀世界提供重要的思維模式和解決問(wèn)題的方法。統(tǒng)計(jì)的研究對(duì)象是數(shù)據(jù),核心是數(shù)據(jù)分析。概率為統(tǒng)計(jì)的發(fā)展提供理論基礎(chǔ)。 【內(nèi)容要求】 內(nèi)容包括:概率、統(tǒng)計(jì)。 1.概率 本單元的學(xué)習(xí),可以幫助學(xué)生結(jié)合具體實(shí)例,理解樣本點(diǎn)、有限樣本空間、隨機(jī)事件,會(huì)計(jì)算古典概型中簡(jiǎn)單隨機(jī)事件的概率,加深對(duì)隨機(jī)現(xiàn)象的認(rèn)識(shí)和理解。 內(nèi)容包括:隨機(jī)事件與概率、隨機(jī)事件的獨(dú)立性。 (1)隨機(jī)事件與概率 ①結(jié)合具體實(shí)例,理解樣本點(diǎn)和有限樣本空間的含義,理解隨機(jī)事件與樣本點(diǎn)的關(guān)系(參見(jiàn)案例12)。了解隨機(jī)事伴的并、交與互斥的含義,能結(jié)合實(shí)例進(jìn)行隨機(jī)事件的并、交運(yùn)算。 ②結(jié)合具體實(shí)例,理解古典概型,能計(jì)算古典概型中筒單隨機(jī)事件的概率。 ③通過(guò)實(shí)例,理解概率的性質(zhì),掌握隨機(jī)事件概率的運(yùn)算法則。 ④結(jié)合實(shí)例,會(huì)用頻率估計(jì)概率。 (2)隨機(jī)事件的獨(dú)立性 結(jié)合有限樣本空間,了解兩個(gè)隨機(jī)事件獨(dú)立性的含義。結(jié)合古典概型,利用獨(dú)立性計(jì)算概率。 2.統(tǒng)計(jì) 本單元的學(xué)習(xí),可以幫助學(xué)生進(jìn)一步學(xué)習(xí)數(shù)據(jù)收集和整理的方法、數(shù)據(jù)直觀圖表的表示方法、數(shù)據(jù)統(tǒng)計(jì)特征的刻畫(huà)方法,通過(guò)具體實(shí)例,感悟在實(shí)際生活中進(jìn)行科學(xué)決策的必要性和可能性;體會(huì)統(tǒng)計(jì)思維與確定性思維的差異、歸納推斷與演繹證明的差異;通過(guò)實(shí)際操作、計(jì)算機(jī)模擬等活動(dòng),積累數(shù)據(jù)分析的經(jīng)驗(yàn)。 內(nèi)容包括:獲取數(shù)據(jù)的基本途徑及相關(guān)概念、抽樣、統(tǒng)計(jì)圖表、用樣本估計(jì)總體。 (1)獲取數(shù)據(jù)的基本途徑及相關(guān)概念 ①知道獲取數(shù)據(jù)的基本途徑,包括:統(tǒng)計(jì)報(bào)表和年鑒、社會(huì)調(diào)查、試驗(yàn)設(shè)計(jì)、普查和抽樣、互聯(lián)網(wǎng)等。 ②了解總體、樣本、樣本量的概念,了解數(shù)據(jù)的隨機(jī)性。 (2)抽樣 ①簡(jiǎn)單隨機(jī)抽樣 通過(guò)實(shí)例,了解簡(jiǎn)單隨機(jī)抽樣的含義及其解決問(wèn)題的過(guò)程,掌握兩種簡(jiǎn)單隨機(jī)抽樣方法:抽簽法和隨機(jī)數(shù)法。會(huì)計(jì)算樣本均值和樣本方差,了解樣本與總體的關(guān)系。 ②分層隨機(jī)抽樣 通過(guò)實(shí)例,了解分層隨機(jī)抽樣的特點(diǎn)和適用范圍,了解分層隨機(jī)抽樣的必要性,掌握各層樣本量比例分配的方法。結(jié)合具體實(shí)例,掌握分層隨機(jī)抽樣的樣本均值和樣本方差(參見(jiàn)案例13)。 ③抽樣方法的選擇 在簡(jiǎn)單的實(shí)際情境中,能根據(jù)實(shí)際問(wèn)題的特點(diǎn),設(shè)計(jì)恰當(dāng)?shù)某闃臃椒ń鉀Q問(wèn)題。 (3)統(tǒng)計(jì)圖表 如根據(jù)實(shí)際問(wèn)題的特點(diǎn),選擇恰當(dāng)?shù)慕y(tǒng)計(jì)圖表對(duì)數(shù)據(jù)進(jìn)行可視化描述,體會(huì)合理使用統(tǒng)計(jì)圖表的重要性。 (4)用樣本估計(jì)總體 ①結(jié)合實(shí)例,能用樣本估計(jì)總體的集中趨勢(shì)參數(shù)(平均數(shù)、中位數(shù)、眾數(shù)),理解集中趨勢(shì)參數(shù)的統(tǒng)計(jì)含義。 ⑦結(jié)合實(shí)例,能用樣本估計(jì)總體的離散程度參數(shù)(標(biāo)準(zhǔn)差、方差、極差),理解離散程度參數(shù)的統(tǒng)計(jì)含義。 ③結(jié)合實(shí)例,能用樣本估計(jì)總體的取值規(guī)律。 ④結(jié)合實(shí)例,能用樣本估計(jì)百分位數(shù),理解百分位數(shù)的統(tǒng)計(jì)含義(參見(jiàn)案例14)。 【學(xué)業(yè)要求】 能夠掌握古典概率的基本特征,根據(jù)實(shí)際問(wèn)題構(gòu)建概率模型,解決簡(jiǎn)單的實(shí)際問(wèn)題。能夠借助古典概型初步認(rèn)識(shí)有限樣本空間、隨機(jī)事件,以及隨機(jī)事件的概率。 能夠根據(jù)實(shí)際問(wèn)題的需求,選擇恰當(dāng)?shù)某闃臃椒ǐ@取樣本數(shù)據(jù),并從中提取需要的數(shù)字特征推斷總體,能夠正確運(yùn)用數(shù)據(jù)分析的方法解決簡(jiǎn)單的實(shí)際問(wèn)題。 能夠區(qū)別統(tǒng)計(jì)思維與確定性思維的差異、歸納推斷與演繹證明的差異。能夠結(jié)合具體問(wèn)題,理解統(tǒng)計(jì)推斷結(jié)果的或然性,正確運(yùn)用統(tǒng)計(jì)結(jié)果解釋實(shí)際問(wèn)題。 重點(diǎn)提升數(shù)據(jù)分析、數(shù)學(xué)建模、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng)。 主題五 數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng) 【內(nèi)容要求】 數(shù)學(xué)建模活動(dòng)是對(duì)現(xiàn)實(shí)問(wèn)題進(jìn)行數(shù)學(xué)抽象,用數(shù)學(xué)語(yǔ)言表達(dá)問(wèn)題、用數(shù)學(xué)方法構(gòu)建模型解決問(wèn)題的過(guò)程。主要包括:在實(shí)際情境中從數(shù)學(xué)的視角發(fā)現(xiàn)問(wèn)題、提出問(wèn)題,分析問(wèn)題、構(gòu)建模型,確定參數(shù)、計(jì)算求解,檢驗(yàn)結(jié)果、改進(jìn)模型,最終解決實(shí)際問(wèn)題。數(shù)學(xué)建摸活動(dòng)是基本數(shù)學(xué)思維運(yùn)用模型解決實(shí)際問(wèn)題的一類綜合實(shí)踐活動(dòng),是高中階段數(shù)學(xué)課程的重要內(nèi)容。 數(shù)學(xué)建?;顒?dòng)的基本過(guò)程如下: 數(shù)學(xué)探究活動(dòng)是圍繞某個(gè)具體的數(shù)學(xué)問(wèn)題,開(kāi)展自主探究、合作研究并最終解決問(wèn)題的過(guò)程。具體表現(xiàn)為:發(fā)現(xiàn)和提出有意義的數(shù)學(xué)問(wèn)題,猜測(cè)合理的數(shù)學(xué)結(jié)論,提出解決問(wèn)題的思路和方案,通過(guò)自主探索、合作研究論證數(shù)學(xué)結(jié)論。數(shù)學(xué)探究活動(dòng)是運(yùn)用數(shù)學(xué)知識(shí)解決數(shù)學(xué)問(wèn)題的一類綜合實(shí)踐活動(dòng),也是高中階段數(shù)學(xué)課程的重要內(nèi)容。 數(shù)學(xué)建模活動(dòng)與數(shù)學(xué)探究活動(dòng)以課題研究的形式開(kāi)展,在必修課程中,要求學(xué)生完成其中的一個(gè)課題研究. 【學(xué)業(yè)要求】 經(jīng)歷數(shù)學(xué)建模活動(dòng)與數(shù)學(xué)探究活動(dòng)的全過(guò)程,整理資料,撰寫研究報(bào)告或小論文,并進(jìn)行報(bào)告、交流。對(duì)于研究報(bào)告或小論文的評(píng)價(jià),教師應(yīng)組織評(píng)價(jià)小組,可以邀請(qǐng)校外專家、社會(huì)人士、家長(zhǎng)等參與評(píng)價(jià),也可以組織學(xué)生互評(píng)。教師要引導(dǎo)學(xué)生遵循學(xué)術(shù)規(guī)范,堅(jiān)守誠(chéng)信底線。研究報(bào)告或小論文及其評(píng)價(jià)應(yīng)存入學(xué)生個(gè)人學(xué)習(xí)檔案,為大學(xué)招生提供參考和依據(jù)。學(xué)生可以采取獨(dú)立完成或者小組合作(2~3人為宜)的方式,完成課題研究(參見(jiàn)案例19)。 重點(diǎn)提升數(shù)學(xué)建模、數(shù)學(xué)抽象、數(shù)據(jù)分析、數(shù)學(xué)運(yùn)算、邏輯推理和直觀形象素養(yǎng)。 (二)選擇性必修課程 選擇性必修課程包括四個(gè)主題,分別是函數(shù)、幾何與代數(shù)、概率與統(tǒng)計(jì)、數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng)。數(shù)學(xué)文化融入課程內(nèi)容。 選擇性必修課程共6學(xué)分108課時(shí),表2給出了課時(shí)分配建議,教材編寫、教學(xué)實(shí)施時(shí)可以根據(jù)實(shí)際作適當(dāng)調(diào)整。 主題一 函數(shù) 在必修課程中,學(xué)生學(xué)習(xí)了函策的概念和性質(zhì),總結(jié)了研究函數(shù)的整本方法,掌握了一些具體的基本函數(shù)類,探索了函數(shù)的應(yīng)用。在本主題中,學(xué)生將學(xué)習(xí)數(shù)列和一元函數(shù)導(dǎo)數(shù)及其應(yīng)用。數(shù)列是一類特殊的函數(shù),是數(shù)學(xué)重要的研究對(duì)象,是研究其他類型函數(shù)的基本工具,在日常生活中也有著廣泛的應(yīng)用。導(dǎo)數(shù)是微積分的核心內(nèi)容之一,是現(xiàn)代數(shù)學(xué)的基本概念,蘊(yùn)含微積分的基本思想,導(dǎo)數(shù)定量地刻畫(huà)了函數(shù)的局部變化,是研究函數(shù)性質(zhì)的基本工具。 【內(nèi)容要求】 內(nèi)容包括:數(shù)列、一元函數(shù)導(dǎo)數(shù)及其應(yīng)用。 1.?dāng)?shù)列 本單元的學(xué)習(xí),可以幫助學(xué)生通過(guò)對(duì)日常生活中實(shí)際問(wèn)題的分析,了解數(shù)列的概念;探索并掌握等差數(shù)列和等比數(shù)列的變化規(guī)律,建立通項(xiàng)公式和前n項(xiàng)和公式:能運(yùn)用等差數(shù)列、等比數(shù)列解決簡(jiǎn)單的實(shí)際問(wèn)題和數(shù)學(xué)問(wèn)題,感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用;了解等差數(shù)列與一元一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的聯(lián)系,感受數(shù)列與函數(shù)的共性與差異,體會(huì)數(shù)學(xué)的整體性。 內(nèi)容包括,數(shù)列概念、等差數(shù)列、等比數(shù)列、*數(shù)學(xué)歸納法。 (1)數(shù)列概念 通過(guò)日常生活和數(shù)學(xué)中的實(shí)例,了解數(shù)列的概念和表示方法(列表、圖象、通項(xiàng)公式),了解數(shù)列是一種特殊函數(shù)。 (2)等差數(shù)列 ①通過(guò)生活中的實(shí)例,理解等差數(shù)列的概念和通項(xiàng)公式的意義。 ②探索并掌握等差數(shù)列的前n項(xiàng)和公式,理解等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的關(guān)系。 ③能在具體的問(wèn)題情填中,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并解決相應(yīng)的問(wèn)題。 ④體會(huì)等差數(shù)列與一元一次函數(shù)的關(guān)系。 (3)等比數(shù)列 ①通過(guò)生活中的實(shí)例,理解等比數(shù)列的概念和通項(xiàng)公式的意義。 ②探索并掌握等比數(shù)列的前n項(xiàng)和公式,理解等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的關(guān)系。 ③能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等比關(guān)系,并解決相應(yīng)的問(wèn)題。 ④體會(huì)等比數(shù)列與指數(shù)函數(shù)的關(guān)系。 (4)*數(shù)學(xué)歸納法 了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明數(shù)列中的一些簡(jiǎn)單命題。 2.一元函數(shù)導(dǎo)數(shù)及其應(yīng)用 本單元的學(xué)習(xí),可以幫助學(xué)生通過(guò)豐富的實(shí)際背景理解導(dǎo)數(shù)的概念,希握導(dǎo)數(shù)的基本運(yùn)算,運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),并解決一些實(shí)際問(wèn)題。 內(nèi)容包括:導(dǎo)數(shù)概念及其意義、導(dǎo)數(shù)運(yùn)算、導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用、*微積分的創(chuàng)立與發(fā)展。 (1)導(dǎo)數(shù)概念及其意義 ①通過(guò)實(shí)例分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道導(dǎo)數(shù)是關(guān)于瞬時(shí)變化率的數(shù)學(xué)表達(dá),體會(huì)導(dǎo)數(shù)的內(nèi)涵與思想。 ②體會(huì)極限思想。 ③通過(guò)函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義。 (2)導(dǎo)數(shù)運(yùn)算 ①能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=,y=的導(dǎo)數(shù)。 ②能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則,求簡(jiǎn)單函數(shù)的導(dǎo)數(shù);能求簡(jiǎn)單的復(fù)合函數(shù)(限于形如f(ax+b))的導(dǎo)數(shù)。 ③會(huì)使用導(dǎo)數(shù)公式表。 (3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 ①結(jié)合實(shí)例,借助幾何直觀了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;對(duì)于多項(xiàng)式函數(shù),能求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間。 ②借助函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;能利用導(dǎo)數(shù)求某些函數(shù)的極大值、極小值以及給定閉區(qū)間上不超過(guò)三次的多項(xiàng)式函數(shù)的最大值、最小值,體會(huì)導(dǎo)數(shù)與單調(diào)性、極值、最大(?。┲档年P(guān)系。 (4)*微積分的創(chuàng)立與發(fā)展 收集、閱讀對(duì)最積分的創(chuàng)立和發(fā)展起重大作用的有關(guān)資料,包括一些量要?dú)v史人物(牛頓、萊布尼茨、柯西、魏爾斯特拉斯等)和事件,采取獨(dú)立完成或者小組合作的方式。完成一篇有關(guān)微積分創(chuàng)立與發(fā)展的研究報(bào)告。 【學(xué)業(yè)要求】 能夠結(jié)合具體實(shí)例,理解通項(xiàng)公式對(duì)于數(shù)列的重要性,知道通項(xiàng)公式是這類函數(shù)的解析表達(dá)式;通過(guò)等差數(shù)列和等比數(shù)列的研究,感悟數(shù)列是可以用來(lái)刻畫(huà)現(xiàn)實(shí)世界中一類具有遞推規(guī)律事物的數(shù)學(xué)模型。掌握通項(xiàng)公式與前n項(xiàng)和公式的關(guān)系;能夠運(yùn)用數(shù)列解決筒單的實(shí)際問(wèn)題。 能夠通過(guò)具體情境,直觀理解導(dǎo)數(shù)概念,感悟極限思想,知道極限思都是人類深刻認(rèn)識(shí)和表達(dá)現(xiàn)實(shí)世界必備的思維品質(zhì)。理解導(dǎo)數(shù)是一種借助極限的運(yùn)算,掌握導(dǎo)數(shù)的基本運(yùn)算規(guī)則,能求筒單函數(shù)和簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)。能夠運(yùn)用導(dǎo)數(shù)研究簡(jiǎn)單函數(shù)的性質(zhì)和變化規(guī)律,能夠利用導(dǎo)數(shù)解決簡(jiǎn)單的實(shí)際問(wèn)題。知道微積分創(chuàng)立過(guò)程,以及微積分對(duì)數(shù)學(xué)發(fā)展的作用。 重點(diǎn)提升數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、直觀想象、數(shù)學(xué)建模和邏輯推理素養(yǎng)。 主題二 幾何與代數(shù) 在必修課程學(xué)習(xí)平面向量的基礎(chǔ)上,本主題將學(xué)習(xí)空間向量,并運(yùn)用空間向量研究立體幾何中圖形的位置關(guān)系和度量關(guān)系。解析幾何是數(shù)學(xué)發(fā)展過(guò)程中的標(biāo)志性成果,是微積分創(chuàng)立的基礎(chǔ)。本主題將學(xué)習(xí)平面解析幾何,通過(guò)建立坐標(biāo)系,借助直線、圓與圓錐曲線的幾何特征,導(dǎo)出相應(yīng)方程;用代數(shù)方法研究它們的幾何性質(zhì),體現(xiàn)形與數(shù)的結(jié)合。 【內(nèi)容要求】 內(nèi)容包括:空間向量與立體幾有、平面解析幾何。 1.空間向量與立體幾何 本單元的學(xué)習(xí),可以幫助學(xué)生在學(xué)習(xí)平面向量的基礎(chǔ)上,利用類比的方法理解空間向量的概念、運(yùn)算、基本定理和應(yīng)用,體會(huì)平面向量和空間向量的共性和差異,運(yùn)用向量的方法研究空間基本圖形的位置關(guān)系和度量關(guān)系,體會(huì)向量方法和綜合幾何方法的共性和差異,運(yùn)用向量方法解決筒單的數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題,感悟向量是研究幾何問(wèn)題的有效工具。 內(nèi)容包括:空間直角坐標(biāo)系、空間向量及其運(yùn)算、向量基本定理及坐標(biāo)表示、空間向量的應(yīng)用。 (1)空間直角坐標(biāo)系 ①在平面直角坐標(biāo)系的基礎(chǔ)上,了解空間直角坐標(biāo)系,感受建立空間直角坐標(biāo)系的必要性,會(huì)用空間直角坐標(biāo)系刻畫(huà)點(diǎn)的位置。 ②借助特殊長(zhǎng)方體(所有被分別與坐標(biāo)軸平行)頂點(diǎn)的坐標(biāo)。 探索并得出空間兩點(diǎn)間的距離公式。 (2)空間向量及其運(yùn)算 ①經(jīng)歷由平面向量推廣到空間向量的過(guò)程,了解空間向量的概念。 ②經(jīng)歷由平面向量的運(yùn)算及其法則推廣到空間向量的過(guò)程。 (3)向量基本定理及坐標(biāo)表示 ①了解空間向量基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示。 ②掌握空間向量的線性運(yùn)算及其坐標(biāo)表示。 ③掌握空間向量的數(shù)量積及其坐標(biāo)表示。 ④了解空間向量投影的概念以及投影向量的意義(參見(jiàn)案例9)。 (4)空間向量的應(yīng)用 ①能用向量語(yǔ)言指述直線和平面,理解直線的方向向量與平面的法向量。 ②能用向量語(yǔ)言表述直線與直線、直線與平面、平面與平面的夾角以及垂直與平行關(guān)系。 ③能用向量方法證明必修內(nèi)容中有關(guān)直線、平面位置關(guān)系的判定定理。 ④能用向量方法解決點(diǎn)到直線、點(diǎn)到平面、相互平行的直線、相互平行的平面的距離問(wèn)題(參見(jiàn)案例16)和簡(jiǎn)單夾角問(wèn)題,并能描述解決這一類問(wèn)題的程序,體會(huì)向量方法在研究幾何問(wèn)題中的作用。 2.平面解析幾何 本單元的學(xué)習(xí),可以幫助學(xué)生在平面直角坐標(biāo)系中,認(rèn)識(shí)直線、圍、橢圓、拋物線、雙曲線的幾何特征,建立它們的標(biāo)準(zhǔn)方程;運(yùn)用代數(shù)方法進(jìn)一步認(rèn)識(shí)圓錐曲線的性質(zhì)以及它們的位置關(guān)系,運(yùn)用平面解析幾何方法解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題,感悟平面解析幾何中蘊(yùn)含的數(shù)學(xué)思想。 內(nèi)容包括:直線與方程、圓與方程、圓錐曲線與方程、平面解析幾何的形成與發(fā)展。 (1)直線與方程 ①在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素。 ②理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫(huà)直線斜率的過(guò)程,掌握過(guò)兩點(diǎn)的直線斜率的計(jì)算公式。 ③能根據(jù)斜率判定兩條直線平行或垂直。 ④根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式)。 ⑤能用解方程組的方法求兩條直線的交點(diǎn)坐標(biāo)。 ⑥探索并掌握平面上兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離。 (2)圓與方程 ①回顧確定圓的幾何要素,在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程。 ②能根據(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關(guān)系。 ③能用直線和圓的方程解決一些簡(jiǎn)單的數(shù)學(xué)問(wèn)題與實(shí)際問(wèn)題。 (3)圓錐曲線與方程 ①了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫(huà)現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用。 ②經(jīng)歷從具體情境中抽象出橢圓的過(guò)程,掌握橢圓的定義、標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì)。 ③了解拋物線與雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,以及它們的簡(jiǎn)單幾何性質(zhì)。 ④通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。 ⑤了解橢圓、拋物線的簡(jiǎn)單應(yīng)用。 (4)*平面解析幾何的形成與發(fā)展 收集、閱讀平面解析幾何的形成與發(fā)展的歷史資料,撰寫小論文、論述平面解析幾何發(fā)展的過(guò)程、重要結(jié)果、主要人物、關(guān)鍵事件及其對(duì)人類文明的貢獻(xiàn)。 【學(xué)業(yè)要求】 能夠理解空間向量的概念、運(yùn)算、背景和作用;能夠依托空間向量建立空間圖形及圖形關(guān)系的想象力;能夠掌握空間向量基本定理,體會(huì)其作用,并能簡(jiǎn)單應(yīng)用;能夠運(yùn)用空間向量解決一些簡(jiǎn)單的實(shí)際問(wèn)題,體會(huì)用向量解決一類問(wèn)題的想路。 能夠掌握平面解析幾何解決問(wèn)題的基本過(guò)程:根據(jù)具體問(wèn)題情境的特點(diǎn),建立平面直角坐標(biāo)系;根據(jù)幾何問(wèn)題和圖形的特點(diǎn),用代數(shù)語(yǔ)言把幾何問(wèn)題轉(zhuǎn)化成為代數(shù)問(wèn)題;根據(jù)對(duì)幾何問(wèn)題(圖形)的分析,探索解決問(wèn)題的思路,運(yùn)用代數(shù)方法得到結(jié)論,給出代數(shù)結(jié)論合理的幾何解釋,解決幾何問(wèn)題。 能夠根據(jù)不同的情境,建立平面直線和圓的方程,建立橢圓、拋物線、雙曲線的標(biāo)準(zhǔn)方程,能夠運(yùn)用代數(shù)的方法研究上述曲線之間的基本關(guān)系,能夠運(yùn)用平面解析幾何的思想解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 重點(diǎn)提升直觀想象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、邏輯推理和數(shù)學(xué)抽象素養(yǎng)。 主題三 概率與統(tǒng)計(jì) 本主題是必修課程中概率與統(tǒng)計(jì)內(nèi)容的延續(xù),將學(xué)習(xí)計(jì)數(shù)原理、概率、統(tǒng)計(jì)的相關(guān)知識(shí)。計(jì)數(shù)原理的內(nèi)容包括兩個(gè)基本計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理。概率的內(nèi)容包括隨機(jī)事件的條件概率、離散型隨機(jī)變量及其分布列、正態(tài)分布。統(tǒng)計(jì)的內(nèi)容包括成對(duì)數(shù)據(jù)的統(tǒng)計(jì)相關(guān)性、一元線性回歸模型、2×2列聯(lián)表。 【內(nèi)容要求】 內(nèi)容包括:計(jì)數(shù)原理、概率、統(tǒng)計(jì)。 1.計(jì)數(shù)原理 分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理是解決計(jì)數(shù)問(wèn)題的基礎(chǔ),稱為基本計(jì)數(shù)原理。本單元的學(xué)習(xí),可以幫助學(xué)生理解兩個(gè)基本計(jì)數(shù)原理,運(yùn)用計(jì)數(shù)原理探索排列、組合、二項(xiàng)式定理等問(wèn)題。 內(nèi)容包括:兩個(gè)基本計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理。 (1)兩個(gè)基本計(jì)數(shù)原理 通過(guò)實(shí)例,了解分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理及其意義。 (2)排列與組合 通過(guò)實(shí)例,理解排列、組合的概念,能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式。 (3)二項(xiàng)式定理 能用多項(xiàng)式運(yùn)算法則和計(jì)數(shù)原理證明二項(xiàng)式定理(參見(jiàn)案例17,18),會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開(kāi)式有關(guān)的簡(jiǎn)單問(wèn)題。 2.概率 本單元的學(xué)習(xí),可以幫助學(xué)生了解條件概率及其與獨(dú)立性的關(guān)系,能進(jìn)行簡(jiǎn)單計(jì)算;感悟離散型隨機(jī)變量及其分布列的含義,知道可以通過(guò)隨機(jī)變量更好地刻畫(huà)隨機(jī)現(xiàn)象;理解伯努利試驗(yàn),掌握二項(xiàng)分布,了解超幾何分布;感悟服從正態(tài)分布的隨機(jī)變量,知道連續(xù)型隨機(jī)變量;基于隨機(jī)變量及其分布解決簡(jiǎn)單的實(shí)際問(wèn)題。 內(nèi)容包括,隨機(jī)事件的條件概率、離散型隨機(jī)變量及其分布列、正態(tài)分布。 (1)隨機(jī)事件的條件概率 ①結(jié)合古典概型,了解條件概率,能計(jì)算簡(jiǎn)單隨機(jī)事件的條件概率。 ②結(jié)合古典概型,了解條件概率與獨(dú)立性的關(guān)系。 ③結(jié)合古典概型,會(huì)利用乘法公式計(jì)算概率。 ④結(jié)合古典概型,會(huì)利用全概率公式計(jì)算概率。*了解貝葉斯公式。 (2)離散型隨機(jī)變量及其分布列 ①通過(guò)具體實(shí)例,了解離散型隨機(jī)變量的概念,理解離散型隨機(jī)變量分布列及其數(shù)字特征(均值、方差)。 ②通過(guò)具體實(shí)例,了解伯努利試驗(yàn),掌握二項(xiàng)分布及其數(shù)字特征,并能解決簡(jiǎn)單的實(shí)際問(wèn)題。 ③通過(guò)具體實(shí)例,了解超幾何分布及其均值,并能解決簡(jiǎn)單的實(shí)際問(wèn)題。 (3)正態(tài)分布 ①通過(guò)誤差模型,了解服從正態(tài)分布的隨機(jī)變量。通過(guò)具體實(shí)例、借助頻率直方圖的幾何直觀,了解正態(tài)分布的特征。 ②了解正態(tài)分布的均值、方差及其含義。 3.統(tǒng)計(jì) 本單元的學(xué)習(xí),可以幫助學(xué)生了解樣本相關(guān)系數(shù)的統(tǒng)計(jì)含義,了解一元線性回歸模型和2×2列聯(lián)表,運(yùn)用這些方法解決簡(jiǎn)單的實(shí)際問(wèn)題。會(huì)利用統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。 內(nèi)容包括:成對(duì)數(shù)據(jù)的統(tǒng)計(jì)相關(guān)性、一元線性回歸模型、2×2列聯(lián)表。 (1)成對(duì)數(shù)據(jù)的統(tǒng)計(jì)相關(guān)性 ①結(jié)合實(shí)例,了解樣本相關(guān)系數(shù)的統(tǒng)計(jì)含義,了解樣本相關(guān)系數(shù)與標(biāo)準(zhǔn)化數(shù)據(jù)向量夾角的關(guān)系。 ②結(jié)合實(shí)例,會(huì)通過(guò)相關(guān)系數(shù)比較多組成對(duì)數(shù)據(jù)的相關(guān)性。 (2)一元線性回歸模型 ①結(jié)合具體實(shí)例,了解一元線性回歸模型的含義,了解模型參數(shù)的統(tǒng)計(jì)意義,了解最小二乘原理,掌握一元線性回歸模型參數(shù)的最小二乘估計(jì)方法,會(huì)使用相關(guān)的統(tǒng)計(jì)軟件。 ②針對(duì)實(shí)際問(wèn)題,會(huì)用一元線性回歸模型進(jìn)行預(yù)測(cè)。 (3)2×2列聯(lián)表 ①通過(guò)實(shí)例,理解2×2列聯(lián)表的統(tǒng)計(jì)意義。 ②通過(guò)實(shí)例,了解2×2列聯(lián)表獨(dú)立性檢驗(yàn)及其應(yīng)用。 【學(xué)業(yè)要求】 能夠結(jié)合具體實(shí)例,識(shí)別和理解分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理及其作用,并能夠運(yùn)用這些原理解決簡(jiǎn)單的實(shí)際問(wèn)題。 能夠結(jié)合具體實(shí)例,理解排列、組合、二項(xiàng)式定理與兩個(gè)計(jì)數(shù)原理的關(guān)系,能夠運(yùn)用兩個(gè)計(jì)數(shù)原理推導(dǎo)排列、組合、二項(xiàng)式定理的相關(guān)公式,并能夠運(yùn)用它們解決簡(jiǎn)單的實(shí)際問(wèn)題,特別是概率中的某些問(wèn)題。 能夠結(jié)合具體實(shí)例,理解隨機(jī)事件的獨(dú)立性和條件概率的關(guān)系,理解離散型隨機(jī)變量在描述隨機(jī)現(xiàn)象中的作用,掌握兩個(gè)基本概率模型及其應(yīng)用,了解正態(tài)分布的作用,進(jìn)一步深入理解隨機(jī)思想在解決實(shí)際問(wèn)題中的作用。 能夠解決成對(duì)數(shù)據(jù)統(tǒng)計(jì)相關(guān)性的簡(jiǎn)單實(shí)際問(wèn)題。能夠結(jié)合具體實(shí)例,掌握運(yùn)用一元線性回歸分析的方法。掌握運(yùn)用2×2列聯(lián)表的方法,解決獨(dú)立性檢驗(yàn)的簡(jiǎn)單實(shí)際問(wèn)題。 重點(diǎn)提升數(shù)據(jù)分標(biāo)、數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象素養(yǎng)。 主題四 數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng) 【內(nèi)容要求】 數(shù)學(xué)建?;顒?dòng)與數(shù)學(xué)探究活動(dòng)以課題研究的形式開(kāi)展。在選擇性必修課程中,要求學(xué)生完成一個(gè)課題研究,可以是數(shù)學(xué)建模的課題研究,也可以是數(shù)學(xué)探究的課題研究。課題可以是學(xué)生在學(xué)習(xí)必修課程時(shí)已完成課題的延續(xù),或者是新的課題。 【學(xué)業(yè)要求】 參考必修課程的主題五。 (三)選修課程 選修課程是由學(xué)校根據(jù)自身情況選擇設(shè)置的課程,供學(xué)生依據(jù)個(gè)人志趣自主選擇,分為A,B,C,D,E五類。 這些課程為學(xué)生確定發(fā)展方向提供引導(dǎo),為學(xué)生展示數(shù)學(xué)才能提供平臺(tái),為學(xué)生發(fā)展數(shù)學(xué)興趣提供選擇,為大學(xué)自主招生提供參考。學(xué)生可以根據(jù)自己的志向和大學(xué)專業(yè)的要求選擇學(xué)習(xí)其中的某些課程。 A類課程是供有志于學(xué)習(xí)數(shù)理類(如數(shù)學(xué)、物理、計(jì)算機(jī)、精密儀器等)學(xué)生選擇的課程。 B類課程是供有志于學(xué)習(xí)經(jīng)濟(jì)、社會(huì)類(如數(shù)理經(jīng)濟(jì)、社會(huì)學(xué)等)和部分理工類(如化學(xué)、生物、機(jī)械等)學(xué)生可以選擇的課程。 C類課程是供有志于學(xué)習(xí)人文類(如語(yǔ)言、歷史等)學(xué)生選擇的課程。 D類課程是供有志于學(xué)習(xí)體育、藝術(shù)(包括音樂(lè)、美術(shù))類學(xué)生選擇的課程。 E 類課程包括拓展視好、日常生活、地方特色的數(shù)學(xué)課程,還包括大學(xué)數(shù)學(xué)的先修課程等。大學(xué)數(shù)學(xué)先修課程包括: 微積分、解析幾何與線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)。 數(shù)學(xué)建模活動(dòng)、數(shù)學(xué)探究活動(dòng)、數(shù)學(xué)文化融入課程內(nèi)容。 選修課程的修習(xí)情況應(yīng)列為綜合素質(zhì)評(píng)價(jià)的內(nèi)容。不同高等院校、不同專業(yè)的招生,根據(jù)需要可以對(duì)選修課程中某些內(nèi)容提出要求。國(guó)家、地方政府、社會(huì)權(quán)威機(jī)構(gòu)可以組織命題考試??荚嚦煽?jī)應(yīng)存入學(xué)生個(gè)人學(xué)習(xí)檔案,供高等院校自主招生參考。 A類課程 A類課程包括微積分、空間向量與代數(shù)、概率與統(tǒng)計(jì)三個(gè)專題,其中微積分2.5學(xué)分,空間向量與代數(shù)2學(xué)分,概率與統(tǒng)計(jì)1.5學(xué)分。 微積分 本專題在數(shù)列極限的基礎(chǔ)上建立函數(shù)極限和連續(xù)的概念;在具體的情境中用極限刻畫(huà)導(dǎo)數(shù),給出借助導(dǎo)數(shù)研究函數(shù)性質(zhì)的一般方法;通過(guò)極限建立微分和積分的概念,闡述微分和積分的關(guān)系(微積分基本定理)及其應(yīng)用。本專題要考慮高中學(xué)生的接受能力,重視課程內(nèi)容的實(shí)際背景,關(guān)注數(shù)學(xué)內(nèi)容的直觀理解,培養(yǎng)學(xué)生的數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模和邏輯推理素養(yǎng),為進(jìn)一步學(xué)習(xí)大學(xué)數(shù)學(xué)課程奠定基礎(chǔ)。 內(nèi)容包括:數(shù)列極限、函數(shù)極限、連續(xù)函數(shù)、導(dǎo)數(shù)與微分、定積分。 1.?dāng)?shù)列極限 (1)通過(guò)典型收斂數(shù)列的極限過(guò)程(當(dāng)時(shí),,,),建立并理解數(shù)列極限的定義。 (2)探索并證明基本性質(zhì):收斂數(shù)列是有界數(shù)列。 (3)通過(guò)典型單調(diào)有界數(shù)列的收斂過(guò)程,理解基本事實(shí):?jiǎn)握{(diào)有界數(shù)列必有極限。 (4)掌握數(shù)列極限的四則運(yùn)算法則。 (5)通過(guò)典型數(shù)列的收斂性,理解e的意義。 2.函數(shù)極限 (1)通過(guò)典型函數(shù)的極限過(guò)程(當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,且),理解函數(shù)極限的ε-δ定義。 (2)掌握基本初等函數(shù)極限的四則運(yùn)算。 (3)掌握兩個(gè)重要函數(shù)極限:,并會(huì)求其簡(jiǎn)單變形的極限。 3.連續(xù)函數(shù) (1)理解連續(xù)函數(shù)的定義。 (2)了解閉區(qū)間上連續(xù)函數(shù)的有界性、介值性及其簡(jiǎn)單應(yīng)用(例如,用二分法求方程近似解)。 4.導(dǎo)數(shù)與微分 (1)借助物理背景與幾何背景理解導(dǎo)數(shù)的意義,并能給出導(dǎo)數(shù)的嚴(yán)格數(shù)學(xué)定義。 (2)通過(guò)導(dǎo)函數(shù)的概念,掌握二階導(dǎo)數(shù)的概念,了解二階導(dǎo)數(shù)的物理意義與幾何意義。 (3)了解復(fù)合函數(shù)的求導(dǎo)公式。 (4)理解并證明拉格朗日中值定理,并能用其討論函數(shù)的單調(diào)性。 (5)會(huì)利用拉格朗日中值定理,證明一些函數(shù)不等式(例如,當(dāng)時(shí),有,)。 (6)會(huì)利用導(dǎo)數(shù)討論函數(shù)的極值問(wèn)題,利用幾何圖形說(shuō)明一個(gè)點(diǎn)是極值點(diǎn)的必要條件與充分條件(不要求數(shù)學(xué)證明)。 (7)了解微分的概念及其實(shí)際意義,并會(huì)用符號(hào)表示。 5.定積分 (1)通過(guò)等分區(qū)間求特殊曲邊梯形面積的極限過(guò)程,理解定積分的概念及其幾何意義與物理意義。 (2)在單調(diào)函數(shù)定積分的計(jì)算過(guò)程中,通過(guò)微分感悟積分與導(dǎo)數(shù)的關(guān)系,理解并掌握牛頓-萊布尼茨公式。 (3)會(huì)利用導(dǎo)數(shù)表和牛頓-萊布尼茨公式,求一些簡(jiǎn)單函數(shù)的定積分。 (4)會(huì)利用定積分計(jì)算某些封閉圖形的面積,計(jì)算球、圓錐、圓臺(tái)和某些三棱錐、三棱臺(tái)的體積;能利用定積分解決簡(jiǎn)單的作功問(wèn)題和重心問(wèn)題。 空間向量與代數(shù) 本專題在必修課程和選擇性必修課程的基礎(chǔ)上,通過(guò)系統(tǒng)學(xué)習(xí)三維空間的向量代數(shù),表述各種運(yùn)算的幾何背景,實(shí)現(xiàn)幾何與代數(shù)的融合。引入矩陣與行列式的概念,利用矩陣?yán)碚摻馊淮畏匠探M;利用向量代數(shù),討論三維空間中點(diǎn)、直線、平面的位置關(guān)系與度量;利用直觀想象建立平面和空間的等距變換理論。將空間幾何與線性代數(shù)融合在一起,把握問(wèn)題的本質(zhì),為代數(shù)理論提供幾何背景,用代數(shù)方法解決幾何問(wèn)題,進(jìn)而解決實(shí)際問(wèn)題,為大學(xué)線性代數(shù)課程的學(xué)習(xí)奠定直觀基礎(chǔ)。 內(nèi)容包括:空間向量代數(shù)、三階矩陣與行列式、三元一次方程組、空間中的平面與直線、等距變換。 1.空間向量代數(shù) (1)通過(guò)幾何直觀,理解向量運(yùn)算的幾何意義。 (2)探索并解釋空間向量的內(nèi)積與外積及其幾何意義。 (3)理解向量的投影與分解及其幾何意義,并會(huì)應(yīng)用。 (4)掌握向量組的線性相關(guān)性,并能加以判斷。 (5)掌握向量的線性運(yùn)算,理解向量空間與子空間的概念。 2.三階矩陣與行列式 (1)通過(guò)幾何直觀引入矩陣概念,掌握矩陣的三種基本運(yùn)算及其性質(zhì)。 (2)了解正交矩陣及其基本性質(zhì),能用代數(shù)方法解決幾何問(wèn)題。 (3)掌握行列式定義與性質(zhì),會(huì)計(jì)算行列式。 3.三元一次方程組 (1)通過(guò)實(shí)例,探索三元一次方程組的求解過(guò)程,理解三元一次方程組的常用解法(高斯消元法),會(huì)用矩陣表示三元一次方程組。 (2)掌握三元齊次線性方程組的解法,會(huì)表示一般解。 (3)掌握非齊次線性方程組有解的判定,建立線性方程組的理論基礎(chǔ)。 (4)探索三元一次方程組解的結(jié)構(gòu),會(huì)表示一般解。 (5)理解克拉默(Cramer)法則,會(huì)用克拉默法則求解三元一次方程組。 4.空間中的平面與直線 (1)通過(guò)向量的坐標(biāo)表示,建立空間平面的方程。 (2)掌握空間直線方程的含義,會(huì)用方程表示空間直線。 (3)理解空間點(diǎn)、直線、平面的位置關(guān)系,會(huì)用代數(shù)方法判斷空間點(diǎn)、直線、平面的位置關(guān)系,會(huì)求點(diǎn)到直線(平面)的距離。 5.等距變換 (1)了解平面變換的含義,理解平面的等距變換,特別是三種基本等距變換:直線反射、平移、旋轉(zhuǎn)。 (2)了解平面對(duì)稱圖形及變換群概念。 (3)掌握常見(jiàn)平面等距變換及其矩陣表示。 (4)了解空間變換的含義,理解空間的等距變換,特別是三種常見(jiàn)等距變換:平面反射、平移、旋轉(zhuǎn)。 (5)了解空間對(duì)稱圖形及變換群。 (6)掌握常見(jiàn)空間等距變換及其矩陣表示。 概率與統(tǒng)計(jì) 本專題在必修課程和選擇性必修課程的基礎(chǔ)上展開(kāi)。在概率方面,通過(guò)具體實(shí)例,進(jìn)一步學(xué)習(xí)連續(xù)型隨機(jī)變量及其概率分布,二維隨機(jī)向量及其聯(lián)合分布,并運(yùn)用這些數(shù)學(xué)模型,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。在統(tǒng)計(jì)方面,結(jié)合一些具體任務(wù),學(xué)習(xí)參數(shù)估計(jì)、假設(shè)檢驗(yàn),并運(yùn)用這些方法解決一些簡(jiǎn)單的實(shí)際問(wèn)題;在一元線性回歸分析的基礎(chǔ)上,結(jié)合具體實(shí)例,進(jìn)一步學(xué)習(xí)二元線性回歸分析的方法,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。在教學(xué)活動(dòng)中,要重視課程內(nèi)容的實(shí)際背景,關(guān)注學(xué)生對(duì)數(shù)學(xué)內(nèi)容的直觀理解;要充分考慮高中學(xué)生接受能力,更要注重學(xué)生數(shù)學(xué)學(xué)科核心素養(yǎng)的提升。 內(nèi)容包括:連續(xù)型隨機(jī)變量及其分布、二維隨機(jī)變量及其聯(lián)合分布、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、二元線性回歸模型。 1.連續(xù)型隨機(jī)變量及其分布 (1)借助具體實(shí)例,了解連續(xù)型隨機(jī)變量及其分布,體會(huì)連續(xù)型隨機(jī)變量與離散型隨機(jī)變量的共性與差異。 (2)結(jié)合生活中的實(shí)例,了解幾個(gè)重要連續(xù)型隨機(jī)變量的分布:均勻分布、正態(tài)分布、卡方分布、t-分布,理解這些分布中參數(shù)的意義,能進(jìn)行簡(jiǎn)單應(yīng)用。 (3)了解連續(xù)型隨機(jī)變量的均值和方差,知道均勻分布、正態(tài)分布、卡方分布、t-分布的均值和方差及其意義。 2.二維隨機(jī)變量及其聯(lián)合分布 (1)在學(xué)習(xí)一維離散型隨機(jī)變量的基礎(chǔ)上,通過(guò)實(shí)例,了解二維離散型隨機(jī)變量概念及其分布列、數(shù)字特征(均值、方差、協(xié)方差、相關(guān)系數(shù)),并能解決簡(jiǎn)單的實(shí)際問(wèn)題。了解兩個(gè)隨機(jī)變量的獨(dú)立性。 (2)在學(xué)習(xí)一維正態(tài)隨機(jī)變量的基礎(chǔ)上,通過(guò)具體實(shí)例,了解二維正態(tài)隨機(jī)變量及其聯(lián)合分布,以及聯(lián)合分布中參數(shù)的統(tǒng)計(jì)含義。 3.參數(shù)估計(jì) 借助對(duì)具體實(shí)際問(wèn)題的分析,知道矩估計(jì)和極大似然估計(jì)這兩種參數(shù)估計(jì)方法,了解參數(shù)估計(jì)原理,能解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 4.假設(shè)檢驗(yàn) (1)了解假設(shè)檢驗(yàn)的統(tǒng)計(jì)思想和基本概念。 (2)借助具體實(shí)例,了解正態(tài)總體均值和方差檢驗(yàn)的方法,了解兩個(gè)正態(tài)總體的均值比較的方法。 (3)結(jié)合具體實(shí)例,了解總體分布的擬合優(yōu)度檢驗(yàn)。 5.二元線性回歸模型 (1)了解二維正態(tài)分布及其參數(shù)的意義。 (2)了解二元線性回歸模型,會(huì)用最小二乘原理對(duì)模型中的參數(shù)進(jìn)行估計(jì)。 (3)運(yùn)用二元線性回歸模型解決簡(jiǎn)單的實(shí)際問(wèn)題。 B類課程 B類課程包括微積分、空間向量與代數(shù)、應(yīng)用統(tǒng)計(jì)、模型四個(gè)專題,其中微積分2學(xué)分,空間向量與代數(shù)1學(xué)分,應(yīng)用統(tǒng)計(jì)2學(xué)分,模型1學(xué)分。 微積分 本專題在數(shù)列極限的基礎(chǔ)上建立函數(shù)極限的概念;在具體的情境中用極限刻畫(huà)導(dǎo)數(shù),給出借助導(dǎo)數(shù)研究函數(shù)性質(zhì)的一般方法;通過(guò)極限建立微分和積分的概念,闡述微分和積分的關(guān)系(微積分基本定理)及其應(yīng)用。在學(xué)習(xí)一元函數(shù)的基礎(chǔ)上,了解二元函數(shù)及其偏導(dǎo)數(shù)的概念。本專題要考慮高中學(xué)生接受能力,重視課程內(nèi)容的實(shí)際背景,關(guān)注數(shù)學(xué)內(nèi)容的直觀理解,培養(yǎng)學(xué)生的運(yùn)算能力,為進(jìn)一步學(xué)習(xí)大學(xué)相關(guān)課程奠定基礎(chǔ)。 內(nèi)容包括:極限、導(dǎo)數(shù)與微分、定積分、二元函數(shù)。 1.極限 (1)通過(guò)典型數(shù)列,了解數(shù)列的極限,掌握極限的符號(hào),了解基本事實(shí):?jiǎn)握{(diào)有界數(shù)列必有極限。 (2)通過(guò)具體函數(shù)犳,且,,了解函數(shù)極限和連續(xù)的概念,掌握極限的符號(hào),了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。 2.導(dǎo)數(shù)與微分 (1)通過(guò)導(dǎo)數(shù)概念,理解二階導(dǎo)數(shù)的概念,了解二階導(dǎo)數(shù)的物理意義與幾何意義;掌握一些基本初等函數(shù)的一階導(dǎo)數(shù)與二階導(dǎo)數(shù)。 (2)理解拉格朗日中值定理,了解它的幾何解釋。 (3)能利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,并證明某些函數(shù)不等式(例如,當(dāng)時(shí),,)。 (4)會(huì)利用導(dǎo)數(shù)討論函數(shù)的極值問(wèn)題,利用幾何圖形說(shuō)明一個(gè)點(diǎn)是極值點(diǎn)的必要條件與充分條件(不要求數(shù)學(xué)證明)。 (5)借助導(dǎo)數(shù),會(huì)求閉區(qū)間上一元一次函數(shù)、一元二次函數(shù)、一元三次函數(shù)的最大值與最小值。 (6)了解微分的概念及其實(shí)際意義,會(huì)用符號(hào)表示。 3.定積分 (1)了解閉區(qū)間上連續(xù)函數(shù)定積分的概念,理解其幾何意義與物理意義。 (2)能用等分區(qū)間方法計(jì)算特殊的黎曼和。 (3)利用的單調(diào)性、等分區(qū)間的方法、拉格朗日中值定理,推導(dǎo)牛頓-萊布尼茨公式。 (4)會(huì)利用定積分計(jì)算某些封閉平面圖形的面積,計(jì)算球、圓錐、圓臺(tái)和某些三棱錐、三棱臺(tái)的體積;了解祖暅原理。 4.二元函數(shù) (1)通過(guò)簡(jiǎn)單實(shí)例,掌握二元函數(shù)的背景。 (2)了解偏導(dǎo)數(shù)的定義,能計(jì)算一些簡(jiǎn)單函數(shù)的偏導(dǎo)數(shù)。例如,已知與分別是基本初等函數(shù),會(huì)求,的偏導(dǎo)數(shù)。 (3)會(huì)求一些簡(jiǎn)單二元函數(shù)的駐點(diǎn),并能求相應(yīng)的實(shí)際問(wèn)題中的極值。 (4)利用等高線法,會(huì)求一次函數(shù)在閉凸多邊形區(qū)域上的最大值和最小值。 (5)會(huì)求閉圓域、閉橢圓域上二元二次函數(shù)的最大值和最小值。 空間向量與代數(shù) 本專題在必修課程和選擇性選修課程的基礎(chǔ)上,比較系統(tǒng)地學(xué)習(xí)三維空間的整體結(jié)構(gòu)———向量代數(shù),感悟幾何與代數(shù)的融合。引入矩陣與行列式的概念,并討論三元一次方程組解的結(jié)構(gòu)。本專題中強(qiáng)調(diào)幾何直觀,把握問(wèn)題的本質(zhì),培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和直觀想象等素養(yǎng),為大學(xué)線性代數(shù)課程的學(xué)習(xí)奠定直觀基礎(chǔ)。 內(nèi)容包括:空間向量代數(shù)、三階矩陣和行列式、三元一次方程組。 1.空間向量代數(shù) (1)通過(guò)幾何直觀,理解向量運(yùn)算的幾何意義。 (2)探索并解釋空間向量的內(nèi)積與外積及其幾何意義。 (3)理解向量的投影與分解及其幾何意義,并會(huì)應(yīng)用。 (4)掌握向量組的線性相關(guān)性,并能加以判斷。 (5)掌握向量的線性運(yùn)算,理解(低維)向量空間與子空間的概念。 (6)會(huì)求點(diǎn)到直線、點(diǎn)到平面的距離,兩條異面直線的距離,直線與平面的夾角。 2.三階矩陣與行列式 (1)通過(guò)幾何直觀引入矩陣概念,掌握矩陣的三種基本運(yùn)算及其性質(zhì)。 (2)掌握行列式定義與性質(zhì),會(huì)計(jì)算行列式。 3.三元一次方程組 (1)通過(guò)實(shí)例,探索三元一次方程組的求解過(guò)程,理解三元一次方程組的常用解法(高斯消元法),會(huì)用矩陣表示三元一次方程組。 (2)掌握三元齊次線性方程組的解法,會(huì)表示一般解。 (3)掌握非齊次線性方程組有解的判定,建立線性方程組的理論基礎(chǔ)。 (4)探索三元一次方程組解的結(jié)構(gòu),會(huì)表示一般解。 (5)理解克拉默(Cramer)法則,會(huì)用克拉默法則求解三元一次方程組。 應(yīng)用統(tǒng)計(jì) 本專題在必修課程和選擇性必修課程的基礎(chǔ)上展開(kāi)。在概率課程方面,通過(guò)具體實(shí)例,進(jìn)一步學(xué)習(xí)連續(xù)型隨機(jī)變量及其概率分布,二維隨機(jī)向量及其聯(lián)合分布,并運(yùn)用這些數(shù)學(xué)模型,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。在統(tǒng)計(jì)方面,結(jié)合一些具體任務(wù),學(xué)習(xí)參數(shù)估計(jì)、假設(shè)檢驗(yàn)和不依賴于分布的統(tǒng)計(jì)檢驗(yàn),并運(yùn)用這些方法解決一些簡(jiǎn)單的實(shí)際問(wèn)題;學(xué)習(xí)數(shù)據(jù)分析的兩種特殊方法——聚類分析和正交設(shè)計(jì)。在教學(xué)活動(dòng)中,要關(guān)注學(xué)生對(duì)數(shù)學(xué)內(nèi)容的直觀理解,充分考慮高學(xué)生接受能力;要重視課程內(nèi)容的實(shí)際背景,更要重視課程內(nèi)容的實(shí)際應(yīng)用;要注重全面提升學(xué)生數(shù)學(xué)核心素養(yǎng)。 內(nèi)容包括:連續(xù)型隨機(jī)變量及其分布、二維隨機(jī)變量及其聯(lián)合分布、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、二元線性回歸模型、聚類分析、正交設(shè)計(jì)。 1.連續(xù)型隨機(jī)變量及其分布 (1)借助具體實(shí)例,了解連續(xù)型隨機(jī)變量及其分布,體會(huì)連續(xù)型隨機(jī)變量與離散型隨機(jī)變量的共性與差異。 (2)結(jié)合生活中的實(shí)例,了解幾個(gè)重要連續(xù)型隨機(jī)變量的分布:均勻分布、正態(tài)分布、卡方分布、τ-分布,理解這些分布中參數(shù)的意義,能進(jìn)行簡(jiǎn)單應(yīng)用。 (3)了解連續(xù)型隨機(jī)變量的均值和方差,知道均勻分布、正態(tài)分布、卡方分布、τ-分布的均值和方差及其意義。 2.二維隨機(jī)變量及其聯(lián)合分布 (1)在學(xué)習(xí)一維離散型隨機(jī)變量的基礎(chǔ)上,通過(guò)實(shí)例,了解二維離散型隨機(jī)變量概念及其分布列、數(shù)字特征(均值、方差、協(xié)方差、相關(guān)系數(shù)),并能解決簡(jiǎn)單的實(shí)際問(wèn)題。了解兩個(gè)隨機(jī)變量的獨(dú)立性。 (2)在學(xué)習(xí)一維正態(tài)隨機(jī)變量的基礎(chǔ)上,通過(guò)具體實(shí)例,了解二維正態(tài)隨機(jī)變量及其聯(lián)合分布,以及聯(lián)合分布中參數(shù)的統(tǒng)計(jì)含義。 3.參數(shù)估計(jì) 借助對(duì)具體實(shí)際問(wèn)題的分析,知道矩估計(jì)和極大似然估計(jì)這兩種參數(shù)估計(jì)方法,了解參數(shù)估計(jì)原理,能解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 4.假設(shè)檢驗(yàn) (1)了解假設(shè)檢驗(yàn)的統(tǒng)計(jì)思想和基本概念。 (2)借助具體實(shí)例,了解正態(tài)總體均值和方差檢驗(yàn)的方法,了解兩個(gè)正態(tài)總體的均值比較的方法。 (3)結(jié)合具體實(shí)例,了解總體分布的擬合優(yōu)度檢驗(yàn)。 5.二元線性回歸模型 (1)了解假設(shè)檢驗(yàn)的 統(tǒng)計(jì)思想和基本概念。 (2)借助具體實(shí)例,了解正態(tài)總體均值和方差檢驗(yàn)的方法,了解兩個(gè)正態(tài)總體的均值比較的方法。 (3)結(jié)合具體實(shí)例,了解總體分布的擬合優(yōu)度檢驗(yàn)。 6.聚類分析 (1)借助具體實(shí)例,了解聚類分析的意義。 (2)借助具體實(shí)例,了解幾種聚類分析的方法,能解決一些簡(jiǎn)單的實(shí)際問(wèn)題。 7.正交設(shè)計(jì) (1)借助具體實(shí)例,了解正交設(shè)計(jì)原理。 (2)借助具體實(shí)例,了解正交表,能用正交表進(jìn)行實(shí)驗(yàn)設(shè)計(jì)。 模型 本專題在必修課程和選擇性必修課程的基礎(chǔ)上,通過(guò)大量的實(shí)際問(wèn)題,建立一些基本的數(shù)學(xué)模型,包括線性模型、二次曲線模型、指數(shù)函數(shù)模型、三角函數(shù)模型、參變數(shù)模型。在教學(xué)中,要重視這些模型的背景、形成過(guò)程、應(yīng)用范圍,提升數(shù)學(xué)建模、數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算和直觀想象素養(yǎng),提升應(yīng)用能力和創(chuàng)新能力。 內(nèi)容包括:線性模型、二次函數(shù)模型、指數(shù)函數(shù)模型、三角函數(shù)模型、參變數(shù)模型。 1.線性模型 (1)結(jié)合實(shí)際問(wèn)題,了解一維線性模型,理解一次函數(shù)與均勻變化的關(guān)系,并能發(fā)現(xiàn)生活中均勻變化的實(shí)際問(wèn)題。 (2)結(jié)合實(shí)際問(wèn)題,了解二維線性模型,探索平面上一些圖形的變化,并能理解一維線性模型與二維線性模型的異同(例如,矩陣A是對(duì)角矩陣)。 (3)結(jié)合實(shí)際問(wèn)題,了解三維線性模型,如經(jīng)濟(jì)學(xué)上的投入產(chǎn)出模型。 2.二次函數(shù)模型 借助實(shí)例(如光學(xué)模型、自由落體、邊際效應(yīng)),了解二次曲線模型的含義和特征,體會(huì)二次曲線模型的實(shí)際意義。 3.指數(shù)函數(shù)模型 借助有關(guān)増長(zhǎng)率的實(shí)際問(wèn)題(如種群增長(zhǎng)、放射物衰減),理解指數(shù)函數(shù)模型,感受增長(zhǎng)率是常數(shù)的事物的單調(diào)變化。 4.三角函數(shù)模型 借助具體實(shí)例,理解一類波動(dòng)問(wèn)題(如光波、聲波、電磁波)等周期現(xiàn)象可以用三角函數(shù)來(lái)刻畫(huà)。 5.參變數(shù)模型 (1)借助具體實(shí)例,理解平面上的參變數(shù)模型,如彈道模型。 (2)借助具體實(shí)例,理解空間上的參變數(shù)模型,如螺旋曲線。 (3)借助一些用參變數(shù)方程描述的物理問(wèn)題與幾何問(wèn)題,理解參變數(shù)的意義,掌握參變數(shù)變化的范圍。 C類課程 C課程包括邏輯推理初步、數(shù)學(xué)模型、社會(huì)調(diào)查與數(shù)據(jù)分析三個(gè)專題,每個(gè)專題2學(xué)分。 邏輯推理初步 本專題內(nèi)容以數(shù)學(xué)推理為主線展開(kāi),將相關(guān)邏輯知識(shí)與數(shù)學(xué)推理有機(jī)融合。通過(guò)本專題的學(xué)習(xí),能進(jìn)一步認(rèn)識(shí)邏輯推理的本質(zhì),體會(huì)其在數(shù)學(xué)推理、論證中的作用;能運(yùn)用相關(guān)邏輯知識(shí)正確表述自己的思想、解釋社會(huì)生活中的現(xiàn)象,提高邏輯思維能力,發(fā)展邏輯推理素養(yǎng)。 內(nèi)容包括:數(shù)學(xué)定義、命題和推理,數(shù)學(xué)推理的前提,數(shù)學(xué)推理的類型,數(shù)學(xué)證明的主要方法,公理化思想。 1.數(shù)學(xué)定義、命題和推理 通過(guò)實(shí)例,了解數(shù)學(xué)定義和數(shù)學(xué)命題,知道數(shù)學(xué)定義的基本方式,了解數(shù)學(xué)命題的表達(dá)形式,了解數(shù)學(xué)定義、數(shù)學(xué)命題和數(shù)學(xué)推理之間的關(guān)系。能理解數(shù)學(xué)命題中的條件和結(jié)論;結(jié)合實(shí)例,能對(duì)充分條件、必要條件、充要條件進(jìn)行判斷。 2.數(shù)學(xué)推理的前提 理解同一律、矛盾律、排中律的含義,通過(guò)實(shí)例認(rèn)識(shí)它們?cè)跀?shù)學(xué)推理中的作用,能在數(shù)學(xué)推理中認(rèn)識(shí)推理前提的重要性。能通過(guò)實(shí)例,區(qū)分排中律與矛盾律,能在推理中正確運(yùn)用排中律。 3.數(shù)學(xué)推理的類型 結(jié)合學(xué)過(guò)的數(shù)學(xué)實(shí)例和生活中的實(shí)例,理解演繹推理、歸納和類比推理,在這些推理的過(guò)程中,認(rèn)識(shí)數(shù)學(xué)推理的傳遞性。知道利用推理能夠得到和驗(yàn)證數(shù)學(xué)的結(jié)果。通過(guò)數(shù)學(xué)和生活中的實(shí)例,認(rèn)識(shí)或然性推理和必然性推理的區(qū)別。 4.數(shù)學(xué)證明的主要方法 通過(guò)數(shù)學(xué)實(shí)例,認(rèn)識(shí)一些常用的數(shù)學(xué)證明方法,理解這些證明方法在數(shù)學(xué)和生活中的意義。 5.公理化思想 通過(guò)數(shù)學(xué)史和其他領(lǐng)域的典型事例,了解數(shù)學(xué)公理化的含義,了解公理體系的獨(dú)立性、相容性、完備性,了解公理化思想的意義和價(jià)值。 數(shù)學(xué)模型 本專題在必修課程和選擇性必修課程的基礎(chǔ)上,通過(guò)具體實(shí)例,建立一些基于數(shù)學(xué)表達(dá)的經(jīng)濟(jì)模型和社會(huì)模型,包括存款貸款模型、投入產(chǎn)出模型、經(jīng)濟(jì)增長(zhǎng)模型、凱恩斯模型、生產(chǎn)函數(shù)模型、等級(jí)評(píng)價(jià)模型、人口増長(zhǎng)模型、信度評(píng)價(jià)模型等。在教學(xué)活動(dòng)中,要讓學(xué)生知道這些模型形成的背景、數(shù)學(xué)表達(dá)的道理、模型參數(shù)的意義、模型適用的范圍,提升數(shù)學(xué)建模、數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算和直觀想象素養(yǎng);知道其中的有些模型(以及模型的衍生)獲得諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)的理由,理解數(shù)學(xué)的應(yīng)用,提高學(xué)習(xí)數(shù)學(xué)的興趣,提升實(shí)踐能力和創(chuàng)新能力。 內(nèi)容包括:經(jīng)濟(jì)數(shù)學(xué)模型、社會(huì)數(shù)學(xué)模型。 1.經(jīng)濟(jì)數(shù)學(xué)模型 (1)存款貸款模型(指數(shù)函數(shù)模型) 通過(guò)對(duì)存款等實(shí)際問(wèn)題的分析,抽象出復(fù)利模型;通過(guò)對(duì)住房貸款等實(shí)際問(wèn)題的分析,抽象出等額本金付款模型。了解這些模型各自的特點(diǎn),能用該樣的模型解決簡(jiǎn)單的實(shí)際問(wèn)題。 (2)投入產(chǎn)出模型(線性方程組模型) 了解投入產(chǎn)出模型的背景和意義,理解模型是如何通過(guò)線性方程組中的系數(shù)的解約束自變量、從而實(shí)現(xiàn)組合生產(chǎn)的計(jì)劃,能用投入產(chǎn)出模型分析并解決簡(jiǎn)單的實(shí)際問(wèn)題。 (3)經(jīng)濟(jì)增長(zhǎng)模型(線性回歸模型) 利用我國(guó)改革開(kāi)放以后經(jīng)濟(jì)發(fā)展數(shù)據(jù),通過(guò)實(shí)踐與GDP(或者人均GDP)之間的關(guān)系建立線性回歸模型(或者分段的線性回歸模型),估計(jì)其中的參數(shù),理解參數(shù)的意義。能用同樣的方法分析簡(jiǎn)單的經(jīng)濟(jì)現(xiàn)象。 (4)凱恩斯模型(經(jīng)濟(jì)理論模型) 了解如何通過(guò)收入、消費(fèi)和投資之間的關(guān)系建立數(shù)學(xué)模型,體會(huì)模型中系數(shù)的乘數(shù)效應(yīng),體會(huì)擴(kuò)大消費(fèi)與經(jīng)濟(jì)發(fā)展、增加國(guó)民收入之間的關(guān)系,能用模型解釋簡(jiǎn)單的經(jīng)濟(jì)現(xiàn)象。 (5)生產(chǎn)函數(shù)模型(對(duì)數(shù)線性模型) 了解生產(chǎn)理論中柯布-道格拉斯(Cobb-Douglas)生產(chǎn)函數(shù),知道如何用數(shù)學(xué)語(yǔ)言表達(dá)生產(chǎn)與勞動(dòng)投入、資本投入之間的關(guān)系,知道如何把這樣的表達(dá)轉(zhuǎn)化為對(duì)數(shù)線性模型、如何對(duì)其中的參數(shù)進(jìn)行估計(jì),能解決簡(jiǎn)單的實(shí)際問(wèn)題。 2.社會(huì)數(shù)學(xué)模型 (1)等級(jí)評(píng)價(jià)模型(平均數(shù)模型) 結(jié)合具體實(shí)例(如產(chǎn)品質(zhì)量評(píng)價(jià)、熱點(diǎn)問(wèn)題篩選、跳水等技能或全能等綜合性體育運(yùn)動(dòng)評(píng)分),了解加權(quán)平均、調(diào)和平均、穩(wěn)健平均等評(píng)價(jià)模型的特點(diǎn)及適用范圍,能用這樣的模型解決簡(jiǎn)單實(shí)際問(wèn)題。 (2)人口增長(zhǎng)模型(指數(shù)函數(shù)模型) 結(jié)合實(shí)例(如我國(guó)人口增長(zhǎng)數(shù)據(jù)),了解為什么可以用指數(shù)增長(zhǎng)模型刻畫(huà)人口變化的規(guī)律,知道模型中參數(shù)的意義,知道如何用模型擬合實(shí)際數(shù)據(jù),并能判斷擬合的有效性。學(xué)科+網(wǎng) (3)信度評(píng)價(jià)模型(Logostic回歸模型) 對(duì)于銀行貸款用戶、信用卡用戶等涉及信度的問(wèn)題,知道用Logostic回歸模型進(jìn)行信度評(píng)級(jí)的道理,知道構(gòu)造兩級(jí)(好、差)或者三級(jí)(好、中、差)進(jìn)行評(píng)價(jià)的方法,并會(huì)簡(jiǎn)單應(yīng)用。 社會(huì)調(diào)查與數(shù)據(jù)分析 社會(huì)調(diào)查是學(xué)生進(jìn)入社會(huì)要掌握的基本能力。本專題在必修課程和選擇性必修課程的基礎(chǔ)上,結(jié)合社會(huì)調(diào)查的實(shí)際問(wèn)題和在社會(huì)調(diào)查中的一些關(guān)鍵環(huán)節(jié),引導(dǎo)學(xué)生經(jīng)歷社會(huì)調(diào)查的全過(guò)程,包括社會(huì)調(diào)查方案的設(shè)計(jì)、抽樣設(shè)計(jì)、數(shù)據(jù)分析、報(bào)告的撰寫,并結(jié)合具體社會(huì)調(diào)查案例,分析在社會(huì)調(diào)查實(shí)施過(guò)程中可能遇到的問(wèn)題,以及解決這些問(wèn)題的對(duì)策。本專題的基本特點(diǎn)是實(shí)用、具體、有效、有趣。在完成社會(huì)調(diào)查任務(wù)的過(guò)程中,要注意引導(dǎo)學(xué)生充分運(yùn)用概率與統(tǒng)計(jì)知識(shí),避免采用不科學(xué)的社會(huì)調(diào)查方法與數(shù)據(jù)分析方法,全面提升學(xué)生數(shù)學(xué)學(xué)科核心素養(yǎng)。 內(nèi)容包括:社會(huì)調(diào)查概論、社會(huì)調(diào)查方案設(shè)計(jì)、抽樣設(shè)計(jì)、社會(huì)調(diào)查數(shù)據(jù)分析、社會(huì)調(diào)查數(shù)據(jù)報(bào)告、社會(huì)調(diào)查案例選講。 1.社會(huì)調(diào)查概論 (1)結(jié)合實(shí)例,了解社會(huì)調(diào)查的使用范圍、分類和意義。 (2)針對(duì)具體問(wèn)題,了解社會(huì)調(diào)查的基本步驟:項(xiàng)目確定、方案設(shè)計(jì)、組織實(shí)施、數(shù)據(jù)分析、形成報(bào)告。 2.社會(huì)調(diào)查方案設(shè)計(jì) (1)結(jié)合實(shí)例,了解調(diào)查方案設(shè)計(jì)的基本內(nèi)容:目的、內(nèi)容、對(duì)象、項(xiàng)目、方式、方法及其他。 (2)結(jié)合實(shí)例,探索調(diào)查方案的可行性評(píng)估。 (3)結(jié)合實(shí)例,了解問(wèn)卷設(shè)計(jì)的主要問(wèn)題:?jiǎn)柧淼慕Y(jié)構(gòu)與常用量表、問(wèn)卷設(shè)計(jì)的程序與技巧。 (4)結(jié)合實(shí)例,掌握社會(huì)調(diào)查基本方法:文案調(diào)查法、觀察法、訪談法、德?tīng)柗品ā㈦娫挿ǖ取?/p> 3.抽樣設(shè)計(jì) 在必修課程學(xué)習(xí)的抽樣方法(簡(jiǎn)單隨機(jī)抽樣、分層抽樣)的基礎(chǔ)上,了解二階與多階抽樣,能根據(jù)具體情境選擇合適的抽樣方法。 4.社會(huì)調(diào)查數(shù)據(jù)分析 (1)結(jié)合具體實(shí)例,整理調(diào)查數(shù)據(jù),了解常用統(tǒng)計(jì)圖表(頻數(shù)表、交叉表、直方圖、莖葉圖、扇形圖、雷達(dá)圖、箱線圖)及常用統(tǒng)計(jì)量(均值、眾數(shù)、中位數(shù)、百分位數(shù)),能夠確定各種抽樣方法的樣本量。 (3)結(jié)合具體實(shí)例,了解相關(guān)分析、回歸分析、多元統(tǒng)計(jì)分析。 5.社會(huì)調(diào)查數(shù)據(jù)報(bào)告 掌握社會(huì)調(diào)查報(bào)告的基本要求及基本內(nèi)容,能夠做出簡(jiǎn)單的、完整的社會(huì)調(diào)查數(shù)據(jù)報(bào)告。 6.社會(huì)調(diào)查案例選講 通過(guò)典型案例的學(xué)習(xí),理解社會(huì)調(diào)查的意義。 D類課程 D課程包括美與數(shù)學(xué)、音樂(lè)中的數(shù)學(xué)、美術(shù)中的數(shù)學(xué)、體育運(yùn)動(dòng)中的數(shù)學(xué)四個(gè)專題,每個(gè)專題1學(xué)分。 美與數(shù)學(xué) 學(xué)會(huì)審美不僅可以陶冶情操,而且能夠改善思維品質(zhì)。本專題嘗試從數(shù)學(xué)的角度刻畫(huà)審美的共性,主要包括:簡(jiǎn)潔、對(duì)稱、周期、和諧等。通過(guò)本課程的學(xué)習(xí),學(xué)生對(duì)美的感受能夠從感性走向理性,提升有志于從事藝術(shù)、體育事業(yè)學(xué)生的審美情趣和審美能力,在形象思維的基礎(chǔ)上増強(qiáng)理性思維能力。 內(nèi)容包括:美與數(shù)學(xué)的簡(jiǎn)潔、美與數(shù)學(xué)的對(duì)稱、美與數(shù)學(xué)的周期、美與數(shù)學(xué)的和諧。 1.美與數(shù)學(xué)的簡(jiǎn)潔 數(shù)學(xué)可以刻畫(huà)現(xiàn)實(shí)世界中的簡(jiǎn)潔美。例如,太陽(yáng)、滿月、車輪、井蓋形狀等美的共性與圓相關(guān),拋物運(yùn)動(dòng)、行星運(yùn)動(dòng)軌跡等美的共性與二次曲線相關(guān),DNA結(jié)構(gòu)、向日葵花盤、海螺等美的共性與特殊曲線相關(guān),家具、日用品、冷卻塔、建筑物外形等美的共性與簡(jiǎn)單曲面相關(guān),雪花、云彩、群山、海岸線、某些現(xiàn)代設(shè)計(jì)等美的共性與分形相關(guān)。 2.美與數(shù)學(xué)的對(duì)稱 數(shù)學(xué)可以刻畫(huà)現(xiàn)實(shí)世界中的對(duì)稱美。例如,某些動(dòng)物形體、飛機(jī)造型、某些建筑物外形等美的共性與空間反射對(duì)稱相關(guān);剪紙、臉譜、風(fēng)箏等傳統(tǒng)藝術(shù)美的共性與軸對(duì)稱相關(guān);晶體等美的共性與中心對(duì)稱相關(guān),帶飾、面飾等美的共性與平移對(duì)稱、中心對(duì)稱、軸對(duì)稱相關(guān)。循環(huán)賽制、守恒定律也具有對(duì)稱美。 3.美與數(shù)學(xué)的周期 數(shù)學(xué)可以刻畫(huà)現(xiàn)實(shí)世界中的周期美。例如,晝夜交替、四季循環(huán)、日月星辰運(yùn)動(dòng)規(guī)律、海洋波浪等美的共性與周期相關(guān),樂(lè)曲創(chuàng)作、圖案設(shè)計(jì)中美的共性與周期相關(guān)。 4.美與數(shù)學(xué)的和諧 數(shù)學(xué)可以刻畫(huà)現(xiàn)實(shí)世界中的和諧美。例如,人體結(jié)構(gòu)、建筑物、國(guó)旗、繪畫(huà)、優(yōu)選法等美的共性與黃金分割相關(guān),苗木生長(zhǎng)、動(dòng)物繁殖、向日葵種子排列規(guī)律等美的共性與斐波那契數(shù)列相關(guān)。 音樂(lè)中的數(shù)學(xué) 音樂(lè)的要素——音高、音響、音色、節(jié)拍、樂(lè)音、樂(lè)曲、樂(lè)器等都與數(shù)學(xué)相關(guān),特別是音的律制與數(shù)學(xué)的關(guān)系十分密切。通過(guò)本專題的學(xué)習(xí),學(xué)生能夠更加理性地理解音樂(lè),鑒賞音樂(lè)的美,可以提升有志于從事音樂(lè)事業(yè)學(xué)生的數(shù)學(xué)修養(yǎng),増強(qiáng)理性思維能力。 內(nèi)容包括:聲波與正弦函數(shù),律制、音階與數(shù)列,樂(lè)曲的節(jié)拍與分?jǐn)?shù),樂(lè)器中的數(shù)學(xué),樂(lè)曲中的數(shù)學(xué)等。 1.聲波與正弦函數(shù) 純音可以用正弦函數(shù)來(lái)表達(dá),音高與正弦函數(shù)的頻率相關(guān),響度與正弦函數(shù)的振幅相關(guān),和聲、音色與正弦函數(shù)的疊加相關(guān)。 2.律制、音階與數(shù)列 音的律制用以規(guī)定音階,三分損益律、五度相生律、純律的音階均與頻率比、弦長(zhǎng)比相關(guān),十二平均律與等比數(shù)列相關(guān)。五線譜能夠科學(xué)地記錄樂(lè)曲。 3.樂(lè)曲的中拍與分景 樂(lè)面的小節(jié)、拍、拍號(hào)與分?jǐn)?shù)相關(guān)。套曲的鋼琴演奏與最小公倍數(shù)相關(guān)。 4.樂(lè)器中的數(shù)學(xué) 鍵盤樂(lè)器(如鋼琴)、弦樂(lè)器(如小提琴、二胡)、管樂(lè)器(如長(zhǎng)笛)的發(fā)聲、共鳴等,都與數(shù)學(xué)相關(guān)。 5.樂(lè)曲中的數(shù)學(xué) 樂(lè)曲中的高潮點(diǎn)、樂(lè)曲調(diào)性的轉(zhuǎn)換點(diǎn),常與黃金分割相關(guān);樂(lè)曲的創(chuàng)作既與平移、反射、伸縮等變換相關(guān),也與排列、組合相關(guān)。 美術(shù)中的數(shù)學(xué) 美術(shù)主要包括繪畫(huà)、雕塑、工藝美術(shù)、建筑藝術(shù),以及書(shū)法、篆刻藝術(shù)等。通過(guò)本專題的學(xué)習(xí),可以幫助學(xué)生了解類術(shù)中的平移、對(duì)稱、黃金分割、透視幾何等數(shù)學(xué)方法,了解計(jì)算機(jī)類術(shù)的基本概念和方法,了解美術(shù)家在創(chuàng)作過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想,體會(huì)數(shù)學(xué)在美術(shù)中的作用,更加理性地鑒賞美術(shù)作品,提升直觀想象和數(shù)學(xué)抽象素養(yǎng)。在教學(xué)過(guò)程中,應(yīng)以具體實(shí)例為主線展開(kāi),將美術(shù)作品與相關(guān)的數(shù)學(xué)知識(shí)有機(jī)聯(lián)系起來(lái)。 內(nèi)容包括:繪畫(huà)與數(shù)學(xué)、其他美術(shù)作品中的數(shù)學(xué)、美術(shù)與計(jì)算機(jī)、美術(shù)家的數(shù)學(xué)思想。 1.繪畫(huà)與數(shù)學(xué) 名畫(huà)中的數(shù)學(xué)元素,繪畫(huà)中的平移與對(duì)稱,繪畫(huà)中的黃金分割,繪畫(huà)中的透視幾何。 2.其他美術(shù)作品中的數(shù)學(xué) 雕塑中的黃金分割,建筑中的對(duì)稱,工藝品中的對(duì)稱,郵票中的數(shù)學(xué),書(shū)法中的黃金分割。 3.美術(shù)與計(jì)算機(jī) 計(jì)算機(jī)繪畫(huà)的發(fā)展背景,計(jì)算機(jī)繪畫(huà)所需的硬件和軟件,計(jì)算機(jī)繪畫(huà)實(shí)例。 4.美術(shù)家的數(shù)學(xué)思想 達(dá)芬奇、畢加索、埃舍爾等的數(shù)學(xué)思想。 體育運(yùn)動(dòng)中的數(shù)學(xué) 在體育運(yùn)動(dòng)中,無(wú)論是運(yùn)動(dòng)本身還是與運(yùn)動(dòng)有關(guān)的事都蘊(yùn)含著許多數(shù)學(xué)原理。例如,田徑運(yùn)動(dòng)中的速度、角度、運(yùn)動(dòng)曲線,比賽場(chǎng)次安排、運(yùn)動(dòng)器械與運(yùn)動(dòng)場(chǎng)館設(shè)計(jì)等。通過(guò)本專題的學(xué)習(xí),學(xué)生能運(yùn)用數(shù)學(xué)知識(shí)探索提高運(yùn)動(dòng)效率的途徑,能運(yùn)用數(shù)學(xué)方法合理安排賽事,提升有志于從事體育事業(yè)學(xué)生的數(shù)學(xué)修養(yǎng),增強(qiáng)理性思維能力。 內(nèi)容包括:運(yùn)動(dòng)場(chǎng)上的數(shù)學(xué)原理、運(yùn)動(dòng)成績(jī)的數(shù)據(jù)分析、運(yùn)動(dòng)賽事中的運(yùn)籌帷幄、體育用具及設(shè)施中的數(shù)學(xué)知識(shí)。 1.運(yùn)動(dòng)場(chǎng)上的數(shù)學(xué)原理 了解與田徑運(yùn)動(dòng)、球類運(yùn)動(dòng)、體操運(yùn)動(dòng)、水上運(yùn)動(dòng)等相關(guān)的數(shù)學(xué)原理,探索如何提高運(yùn)動(dòng)效率和運(yùn)動(dòng)成績(jī)。例如,根據(jù)向量分解的原理指導(dǎo)運(yùn)動(dòng)員進(jìn)行跳高、跳遠(yuǎn)和投擲。 2.運(yùn)動(dòng)成績(jī)的數(shù)據(jù)分析 通過(guò)健康指標(biāo)和運(yùn)動(dòng)成績(jī)的數(shù)據(jù),運(yùn)用概率與統(tǒng)計(jì)知識(shí)尋求規(guī)律、探索合理方案。例如,通過(guò)日常運(yùn)動(dòng)和健康狀況的數(shù)據(jù),分析運(yùn)動(dòng)與健康的關(guān)系。學(xué)科網(wǎng) 3.運(yùn)動(dòng)賽事中的運(yùn)籌帷幄 知道能借助圖論、運(yùn)籌等數(shù)學(xué)知識(shí)分析體育賽事的規(guī)律,進(jìn)行合理安排,提升教練員的指擇策略,改善運(yùn)動(dòng)員賽場(chǎng)上的應(yīng)對(duì)策略。 4.體育用具及設(shè)施中的數(shù)學(xué)知識(shí) 知道在大多數(shù)體育運(yùn)動(dòng)用具和場(chǎng)館的設(shè)計(jì)中都運(yùn)用了數(shù)學(xué)知識(shí),例如,足球、乒乓球的制作,網(wǎng)球拍的構(gòu)造,標(biāo)準(zhǔn)跑道的規(guī)劃;通過(guò)數(shù)學(xué)曲面感悟“鳥(niǎo)集”“水立方”等體育設(shè)施的設(shè)計(jì)原理。 E類課程 E類課程是學(xué)校根據(jù)自身的需求開(kāi)發(fā)或選用的課程,包括拓展視野、日常生活、地方特色的數(shù)學(xué)課程,還包括大學(xué)數(shù)學(xué)的先修課程等。 拓展視野的數(shù)學(xué)課程 例如,機(jī)器人與數(shù)學(xué)、對(duì)稱與群、球面上的幾何、歐拉公式與閉曲面分類、數(shù)列與差分、初等數(shù)論初步。 日常生活的數(shù)學(xué)課程 例如,生活中的數(shù)學(xué)、家庭理財(cái)與數(shù)學(xué)。 地方特色的數(shù)學(xué)課程 例如,地方建筑與數(shù)學(xué)、家鄉(xiāng)經(jīng)濟(jì)發(fā)展的社會(huì)調(diào)查與數(shù)據(jù)分析。 大學(xué)數(shù)學(xué)的先修課程 包括:微積分、解析幾何與線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)。 |
|
來(lái)自: 百眼通 > 《01總論-472》