乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      機械取栓時代靶向再灌注損傷

       仙貝70 2018-09-08

      藥物溶栓和機械取栓是缺血性卒中的最有效治療方法,伴隨其日益普及,缺血再灌注損傷成為很多缺血性卒中患者和臨床醫(yī)師要面臨的挑戰(zhàn)。加利福尼亞大學(xué)的Atsushi Mizuma等綜述神經(jīng)系統(tǒng)缺血再灌注損傷的基礎(chǔ)和臨床進展,發(fā)表于2018年7月的Stroke雜志,全文翻譯如下。


      機械取栓時代靶向再灌注損傷

      用r-tPA(recombinant tissue-type plasminogen activator)進行藥物血管再通已成為急性缺血性腦卒中(IS)的主要治療手段1。近期隨機對照試驗進一步證實機械取栓(MT)的價值2-4。雖然急性期治療的主要目標(biāo)是恢復(fù)血流,而如果再通太遲,與未恢復(fù)血流相比其損傷會更大5。這主要是由于產(chǎn)生過量的活性氧類(ROS),其可直接或通過觸發(fā)炎癥反應(yīng)而間接損傷神經(jīng)細胞。炎癥導(dǎo)致產(chǎn)生損傷性免疫介質(zhì)、效應(yīng)分子和更多的ROS6。ROS也可通過DNA/RNA損傷和脂質(zhì)過氧化引起細胞凋亡/壞死。這一循環(huán)稱為再灌注損傷(R/I;見圖)。

      實驗研究顯示,相較于永久性大腦中動脈阻斷(MCAO),>2-3小時的暫時性大腦中動脈阻斷(tMCAO)可導(dǎo)致更加嚴(yán)重的后果7。在臨床層面,延遲再通有時可導(dǎo)致更加不良的結(jié)局8。在某些患者,MRI上高信號急性再灌注標(biāo)志與出血轉(zhuǎn)化(HTf)和臨床惡化相關(guān),提示人類存在R/I9。因此,血管再通后針對R/I的輔助治療可改善患者結(jié)局并減少r-tPA的并發(fā)癥。

      筆者將聚焦R/I的潛在機制和針對實驗性血管再通模型中這些機制的實驗室研究(如tMCAO或血栓栓塞性卒中)(表1)10-18。同時我們也會綜述一下過去和現(xiàn)今的相關(guān)臨床試驗,有些與血管再通聯(lián)合應(yīng)用(表2)19-30。

      R/I的抗炎治療

      卒中后炎癥反應(yīng)被認為會加重缺血損傷??蓪?dǎo)致惡化的免疫分子包括炎癥細胞因子、化學(xué)因子和免疫細胞產(chǎn)生的活性成分。腦細胞缺血損傷后,免疫細胞激活首先發(fā)生于小膠質(zhì)細胞并釋放免疫分子。隨后,白細胞激活并浸潤腦組織。一些實驗室研究顯示,阻止白細胞浸潤可改善卒中模型的結(jié)局,雖然其臨床效果尚未被證實31。

      卒中后即出現(xiàn)炎癥反應(yīng),因缺血性腦細胞會導(dǎo)致分泌一系列分子,這些分子統(tǒng)稱為損傷相關(guān)分子模式。這些分子包括高遷移率簇蛋白B,過氧化物酶,嘌呤類,核苷酸類(包括ATP和UDP)和核酸片段6,31。損傷相關(guān)分子模式結(jié)合小膠質(zhì)細胞和白細胞上的固有免疫受體(如Toll樣和嘌呤受體),使其激活,然后激活炎性轉(zhuǎn)錄因子(核因子-κB和絲裂原活化蛋白激酶)。這些因子缺乏或藥物將其阻斷可顯著保護卒中的實驗動物32,33。這些因子可促進細胞因子,化學(xué)因子,黏附分子,基質(zhì)金屬蛋白-9(MMP-9),誘導(dǎo)型一氧化氮合酶和NADPH氧化酶(NOX)的產(chǎn)生,加重缺血損傷。促炎細胞因子白細胞介素(IL)-1β的影響可遠及細胞翻譯層面。

      在一項II期臨床試驗,人類重組IL-1受體拮抗劑(IL-1β的內(nèi)源性抑制劑)減少了梗塞體積并改善3個月的神經(jīng)系統(tǒng)結(jié)局34。T細胞釋放的促炎細胞因子(干擾素γ,IL-17,和IL-23)近期正作為治療靶標(biāo)研究。IL-17促進腫瘤壞死因子-α(TNF-α),IL-1β和MMP-9的表達,而IL-23則誘導(dǎo)IL-17的表達35。抑制這些細胞因子可改善實驗R/I模型的神經(jīng)系統(tǒng)結(jié)局。

      在tMCAO后,小膠質(zhì)細胞/巨噬細胞表達TNF-α誘導(dǎo)型蛋白8-樣分子2,可起到抗炎作用。而TNF-α誘導(dǎo)型蛋白8-樣分子2缺失型小鼠在tMCAO后則加重神經(jīng)系統(tǒng)結(jié)局和炎癥反應(yīng)36。IL-10,IL-4和轉(zhuǎn)化生長因子-β1是抗炎細胞因子,在卒中模型中均似與神經(jīng)系統(tǒng)結(jié)局改善相關(guān)6,37。MMP-9由免疫細胞表達,可通過破壞血腦屏障(BBB)促進炎癥反應(yīng)。另外,內(nèi)源性tPA激活纖溶酶,并進一步激活MMP-9。因此,應(yīng)用r-tPA可能促進出血,如果入腦還可導(dǎo)致腦水腫,而MMP-9則成為一個相關(guān)治療靶標(biāo)38。

      一些抗炎療法已經(jīng)在卒中模型中應(yīng)用,尤其是與r-tPA聯(lián)用。米諾環(huán)素具有多重抗細胞死亡效應(yīng),可改善神經(jīng)系統(tǒng)結(jié)局并降低r-tPA相關(guān)的HTf10。米諾環(huán)素保護作用的一個機制可能是其通過阻斷P38絲裂原活化蛋白激酶抑制小膠質(zhì)細胞激活的能力。米諾環(huán)素也能通過抑制MMP改善BBB的完整性39。BB-94是一個MMP-9抑制劑,可降低兔卒中模型中r-tPA誘導(dǎo)的HTf11。然而,MMPs參與神經(jīng)血管重塑,長期抑制可能阻礙修復(fù)作用40。表沒食子兒茶素沒食子酸酯(在綠茶中發(fā)現(xiàn))因其抗氧化和神經(jīng)保護特性而受到關(guān)注。

      在卒中模型,表沒食子兒茶素沒食子酸酯下調(diào)MMP-2和MMP-9,同時上調(diào)纖溶酶原激活物抑制劑-112。沒食子兒茶素沒食子酸酯與r-tPA聯(lián)用可延長r-tPA的治療時間窗并減少腦水腫和BBB破壞12。顆粒蛋白前體(腦內(nèi)的一種生長因子)被認為有抗炎和血管保護作用,缺血性卒中后其在小膠質(zhì)細胞和內(nèi)皮細胞中顯著增加13。r-tPA聯(lián)合顆粒蛋白前體在卒中模型中顯示出改善神經(jīng)系統(tǒng)結(jié)局和減少腦出血與腦水腫的作用。粒細胞集落刺激因子可能通過抗炎作用而提供神經(jīng)保護41。在一個tMCAO模型中,相較于單獨應(yīng)用r-tPA,聯(lián)用粒細胞集落刺激因子可減少HTf并改善神經(jīng)系統(tǒng)結(jié)局14。

      R/I的抗氧化/氮化治療

      IS后的再灌注通過線粒體呼吸鏈和NOX誘發(fā)氧化應(yīng)激。缺血的線粒體被再灌注后產(chǎn)生的ROS充填,但不能有效地將其中和。內(nèi)源性抗氧化酶(超氧化物歧化酶、谷胱甘肽過氧化物酶和過氧化氫酶)的過表達已證實可改善實驗性卒中的結(jié)局。過表達超氧化物歧化酶的轉(zhuǎn)基因小鼠可顯著減少實驗tMCAO模型的卒中面積,而超氧化物歧化酶缺失型小鼠結(jié)局較差42。過表達其它內(nèi)源性抗氧化劑,如谷胱甘肽過氧化物酶和過氧化氫酶,也有類似的神經(jīng)保護作用43。在臨床層面,依布硒啉(ebselen,一種谷胱甘肽過氧化物酶類似物)可改善起病6小時內(nèi)IS患者的神經(jīng)系統(tǒng)結(jié)局44。

      免疫細胞通過NOX途徑產(chǎn)生超氧化物,可加劇氧化應(yīng)激45。抑制NOX顯示可改善實驗性卒中的結(jié)局45。但NOX也可能在高血糖誘導(dǎo)的卒中惡化中扮演重要角色。葡萄糖可通過磷酸己糖支路代謝,產(chǎn)生NADPH,為生成NOX提供底物。羅布麻寧是一種NOX抑制劑,可改善實驗中高血糖性tMCAO的結(jié)局46,減少高血糖誘發(fā)性BBB破壞的惡化及r-tPA應(yīng)用時的HTf47。

      在過去這些年,還研究過其它相關(guān)治療策略。自由基清除劑(如替拉扎特或NXY-059聯(lián)合r-tPA)在實驗性卒中均有效果15,但在臨床研究中是陰性的48,49。PSD-95蛋白(postsynaptic density-95,突觸后致密物-95)與N-甲基-D-門冬氨酸受體相關(guān)。其募集神經(jīng)源性一氧化氮合成酶,從而產(chǎn)生神經(jīng)毒性一氧化氮50。PSD-95抑制劑NA-1可改善實驗性R/I的結(jié)局。胰島素樣生長因子是一種參與促存活信號通路的多效能肽,也可抑制氧化與氮化應(yīng)激51。尿酸通過抗氧化作用改善血栓栓塞卒中模型的結(jié)局16。依達拉奉是ROS清除劑,與r-tPA聯(lián)用也可改善實驗?zāi)P偷纳窠?jīng)系統(tǒng)結(jié)局17,在日本用于臨床急性IS的治療19

      R/I的抗凋亡治療

      ROS介導(dǎo)的損傷引起細胞凋亡,可能與R/I尤為相關(guān)。因為凋亡需要消耗細胞能量儲備以促進細胞死亡52。線粒體發(fā)起的凋亡稱為內(nèi)源性途徑。此時,線粒體向胞漿釋放細胞色素C,與凋亡蛋白酶激活因子1和procaspase-9形成凋亡體53。凋亡體激活caspase-9并激活效應(yīng)分子caspase-3,促進DNA清除52。超氧化物歧化酶過表達小鼠在R/I時顯示出凋亡減少和細胞色素C移位,阻斷線粒體源性caspase激活劑和線粒體絲氨酸蛋白酶也能達到此效果54。

      Bcl-2家族參與凋亡的分子包括BAX、BAD和BID,它們觸發(fā)細胞色素C釋放,而Bcl-2和Bcl-XL阻礙其釋放52。改變這些分子的平衡利于抗凋亡亞型的形成,可改善實驗卒中的結(jié)局。當(dāng)死亡受體與其受體結(jié)合,啟則動外源性凋亡途徑。研究廣泛的受體-配體組合是Fas/FasL。FasL與Fas結(jié)合,激活caspase-8,最終激活caspase-3并清除DNA52。具有Fas突變的小鼠可少受R/I損害55

      最后,雌激素已知參與IS。與雄性動物相比,雌性動物在實驗性卒中后結(jié)局更好。17-β雌二醇(E2)的保護作用可能與Bcl-2上調(diào)和抑制凋亡有關(guān)56。因此,性別特異性類固醇可能與凋亡調(diào)節(jié)關(guān)聯(lián)。

      與血流再通聯(lián)合治療的臨床研究

      雖然已經(jīng)在實驗卒中模型中研究了一些藥物與r-tPA聯(lián)用預(yù)防R/I,也有臨床研究進行聯(lián)用r-tPA和MT的探索。雖然沒有刻意針對預(yù)防R/I設(shè)計,這些研究可為未來相關(guān)研究提供框架。

      依達拉奉聯(lián)合r-tPA/MT已經(jīng)在日本用于臨床。雖然缺乏對照組,2個觀察性研究具有提示作用。PROTECT4.5(Post-marketing Registry on Treatment With Edaravone in Acute Cerebral Infarction by the Time Window of 4.5 Hours)評價依達拉奉聯(lián)用r-tPA,提示這一組合可能增加較好結(jié)局的機會,減少HTf19。YAMATO(Tissue-Type Plasminogen Activator and Edaravone Combination Therapy)提示,應(yīng)用r-tPA后,良好結(jié)局與依達拉奉應(yīng)用的時機無關(guān)20。最后,對一項卒中注冊實驗(RESCUE Japan Registry[Recovery by Endovascular Salvage for Cerebral Ultra-Acute Embolism])的亞類分析提示,依達拉奉聯(lián)用r-tPA比MT更有效21。

      URICO-ICTUS(Efficacy Study of Combined Treatment With Uric Acid and r-tPA in Acute Ischemic Stroke)實驗評價尿酸聯(lián)用r-tPA/MT對急性IS的治療效果,確定在發(fā)病4.5小時的時間窗內(nèi)是安全的。此研究也報告,尿酸降低梗塞發(fā)展,改善早期再通和高血糖患者的結(jié)局16。有研究也證實了尿酸聯(lián)用MT的有效性22。

      治療性亞低溫,被認為可靶向多種R/I機制,也顯示可改善心臟驟停和新生兒缺血缺氧的神經(jīng)功能結(jié)局57。在實驗性tMCAO,治療性亞低溫與r-tPA聯(lián)用可減少BBB破壞和HTf18。ReCCLAIM(Reperfusion and Cooling in Cerebral Acute Ischemia)23和ICTuS-2(Intravascular Cooling in the Treatment of Stroke 2)24檢驗卒中患者中這種治療組合,均顯示這種治療組合是安全可行的,盡管RECCLAIM-Ⅱ(進一步檢驗MT)因為缺乏資金支持而提前終止25。MT與經(jīng)動脈內(nèi)注入冷鹽水聯(lián)用而選擇性腦降溫的初步研究正在進行,顯示是安全可行的58。

      ACTION-1(Effect of Natalizumab on Infarct Volume in Acute Ischemia Stroke)研究那他珠單抗在急性IS中的安全和有效性。那他珠單抗是整合素α4的抗體,用于治療多發(fā)性硬化。那他珠單抗被認為可減少淋巴細胞浸潤和黏附分子上調(diào)。雖然那他珠單抗在實驗性卒中未顯示有效性59,ACTION-1包含接受r-tPA的患者60。雖然給那他珠單抗后梗塞體積無顯著差異,但神經(jīng)系統(tǒng)結(jié)局有改善。

      其它的抗炎和抗氧化藥物(均在臨床上用于其它適應(yīng)癥)也在臨床上與r-tPA聯(lián)用。Ⅰ期實驗SAVER-1(Superselective Administration of VErapamil During Recanalization in Acute Ischemic Stroke)研究維拉帕米聯(lián)合r-tPA/MT的治療效果,發(fā)現(xiàn)此組合安全26。類似的,米諾環(huán)素聯(lián)用r-tPA也看起來是安全的,雖然效果不明確27。表沒食子兒茶素沒食子酸酯聯(lián)用r-tPA看起來可延長r-tPA的治療時間窗并改善結(jié)局28。一項小型研究提示,口服芬戈莫德能安全地改善90天神經(jīng)功能結(jié)局61。同時,一項芬戈莫德聯(lián)用r-tPA的初步研究證實,其安全和趨向良好臨床結(jié)局,減少HTf29。近期,Ⅳ期實驗STARS07(Stroke Treatment with Acute Reperfusion and Simvastatin)證實了辛伐他汀在治療急性卒中的有效性和安全性,顯示辛伐他汀聯(lián)用r-tPA安全且可減少HTf30。

      目前,有幾項正在進行的旨在評價血管再通聯(lián)合神經(jīng)保護安全性和有效性的研究。與先前實驗相比,這些研究直接檢驗輔助治療聯(lián)合r-tPA/MT是否改善結(jié)局,同時也可以研究R/I?;罨鞍證被認為可抑制炎癥并阻止BBB破壞,在RHAPSODY(The Safety Evaluation of 3K3A-activated protein C in Ischemic Stroke)(NCT02222714)中正與r-tPA/MT聯(lián)合應(yīng)用62

      另一項阿托伐他汀與MT聯(lián)用的臨床研究SEATIS(The Safety and Efficacy Study of High Dose Atorvastatin After Thrombolytic Treatment in Acute Ischemic Stroke)(NCT02452502)也在進行中63。NA-1聯(lián)合MT的ESCAPE-NA1(Safety and Efficacy of NA-1 in Subjects Undergoing Endovascular Thrombectomy for Stroke)(NCT02930018)旨在評價安全性和有效性。雖然并未限制招募接受r-tPA/MT治療的患者,ACTIONⅡ(NCT02730455)評價靜脈用那他珠單抗的安全性和有效性。

      最后,F(xiàn)AMTAIS(Fingolimod with Alteplase bridging with Mechanical Thrombectomy in Acute Ischemic Stroke;NCT02956200)作為一項Ⅱ期橋接療法(fingolimod聯(lián)合r-tPA/MT),近期開始評估在大血管堵塞中的安全性和有效性64

      結(jié)論

      對急性卒中R/I的廣泛研究有可能找到可向臨床轉(zhuǎn)化的潛在治療靶點。R/I現(xiàn)象在實驗室已經(jīng)有較好的研究。雖然在臨床上不清楚,急性血管再通的新進展可能幫助明確人類是否存在R/I。盡管藥物溶栓有增加腦出血的風(fēng)險,針對同一靶標(biāo)的輔助治療在實驗條件下可減少HTf,延長治療時間窗和改善結(jié)局。我們推測這些治療也能使更多的卒中患者適合血管再通治療。

      侯坤,吉林大學(xué)第一醫(yī)院神經(jīng)外科

      李桂晨,吉林大學(xué)第一醫(yī)院神經(jīng)內(nèi)科

      參考文獻

      1. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;CD000213.

      2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from fie randomised trials. Lancet. 2016;387:1723–1731.doi: 10.1016/S0140-6736(16)00163-X.

      3. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al; DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between defiit and infarct. N Engl J Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442.

      4. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, OrtegaGutierrez S, et al; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med.
      2018;378:708–718. doi: 10.1056/NEJMoa1713973.

      5. Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab. 1997;17:1048–1056. doi: 10.1097/00004647-199710000-00006.

      6. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci. 2015;9:147. doi: 10.3389/fnins.2015.00147.

      7. Yang GY, Betz AL. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke. 1994;25:1658–1664; discussion 1664.

      8. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, et al; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–1703. doi: 10.1016/S0140-6736(10)60491-6.

      9. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke.2004;35(11 suppl 1):2659–2661. doi: 10.1161/01.STR.0000144051.32131.09.

      10. Fan X, Lo EH, Wang X. Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke. 2013;44:745–752. doi: 10.1161/STROKEAHA.111.000309.

      11. Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000;31:3034–3040.

      12. You YP. Epigallocatechin gallate extends the therapeutic window of recombinant tissue plasminogen activator treatment in ischemic rats. J Stroke Cerebrovasc Dis. 2016;25:990–997. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.014.

      13. Kanazawa M, Kawamura K, Takahashi T, Miura M, Tanaka Y, Koyama M, et al. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain. 2015;138(pt 7):1932–1948. doi:10.1093/brain/awv079.

      14. dela Pe?a IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35:338–346. doi: 10.1038/jcbfm.2014.208.

      15. Lapchak PA, Araujo DM, Song D, Wei J, Purdy R, Zivin JA. Effects of the spin trap agent disodium- [tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) on intracerebral hemorrhage in a rabbit large clot embolic stroke model: combination studies with tissue plasminogen activator. Stroke. 2002;33:1665–1670.

      16. Romanos E, Planas AM, Amaro S, Chamorro A. Uric acid reduces brain damage and improves the benefis of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2007;27:14–20. doi: 10.1038/sj.jcbfm.9600312.

      17. Yagi K, Kitazato KT, Uno M, Tada Y, Kinouchi T, Shimada K, et al. Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke. 2009;40:626–631. doi: 10.1161/STROKEAHA.108.520262.

      18. Tang XN, Liu L, Koike MA, Yenari MA. Mild hypothermia reduces tissue plasminogen activator-related hemorrhage and blood brain barrier disruption after experimental stroke. Ther Hypothermia Temp Manag. 2013;3:74–83. doi: 10.1089/ther.2013.0010.

      19. Yamaguchi T, Awano H, Matsuda H, Tanahashi N; PROTECT4.5 Investigators. Edaravone with and without.6 Mg/Kg alteplase within 4.5 hours after ischemic stroke: a prospective cohort study (PROTECT4.5). J Stroke Cerebrovasc Dis. 2017;26:756–765. doi: 10.1016/j.jstrokecerebrovasdis.2016.10.011.

      20. Aoki J, Kimura K, Morita N, Harada M, Metoki N, Tateishi Y, et al;YAMATO Study Investigators. YAMATO Study (Tissue-type plasminogen activator and edaravone combination therapy). Stroke. 2017;48:712–719. doi: 10.1161/STROKEAHA.116.015042.

      21. MiyajiY, Yoshimura S, Sakai N, Yamagami H, Egashira Y, Shirakawa M, et al. Effect of edaravone on favorable outcome in patients with acute cerebral large vessel occlusion: subanalysis of RESCUE-Japan Registry. Neurol Med Chir (Tokyo). 2015;55:241–247. doi: 10.2176/nmc.ra.2014-0219.

      22. Amaro S, Llull L, Renú A, Laredo C, Perez B, Vila E, et al. Uric acid improves glucose-driven oxidative stress in human ischemic stroke. Ann Neurol. 2015;77:775–783. doi: 10.1002/ana.24378.

      23. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, et al. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J Neurointerv Surg. 2014;6:91–95. doi: 10.1136/neurintsurg-2013-010656.

      24. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, et al; Collaborators. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke. 2016;47:2888–2895. doi: 10.1161/STROKEAHA.116.014200.

      25. The Internet Stroke Center. REperfusion with Cooling in CerebraL Acute IscheMia II “RECCLAIM-II”. http://www./trials/clinicalstudies/reperfusion-with-cooling-in-cerebral-acute-ischemiaii–2. Accessed April 17, 2018.

      26. Fraser JF, Maniskas M, Trout A, Lukins D, Parker L, Stafford WL, et al. Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke. J Cereb Blood Flow Metab. 2017;37:3531–3543.doi: 10.1177/0271678X17705259.
      27. Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, et al. Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke. 2013;44:2493–2499. doi:
      10.1161/STROKEAHA.113.000780.
      28. Wang XH, You YP. Epigallocatechin gallate extends therapeutic window of recombinant tissue plasminogen activator treatment for brain ischemic stroke: a randomized double-blind and placebo-controlled trial. Clin Neuropharmacol. 2017;40:24–28. doi:10.1097/WNF.0000000000000197.
      29. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator figolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015;132:1104–1112. doi: 10.1161/CIRCULATIONAHA.115.016371.
      30. Montaner J, Bustamante A, García-Matas S, Martínez-Zabaleta M, Jiménez C, de la Torre J, et al; STARS Investigators. Combination of thrombolysis and statins in acute stroke is safe: results of the STARS randomized trial (Stroke Treatment With Acute Reperfusion and Simvastatin). Stroke. 2016;47:2870–2873. doi: 10.1161/STROKEAHA.116.014600.
      31. Danton GH, Dietrich WD. Inflmmatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62:127–136.
      32. Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. Ann N Y Acad Sci. 2010;1207:32–40. doi: 10.1111/j.1749-6632.2010.05735.x.
      33. Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci. 2016;59:90–98. doi: 10.1007/s12031-016-0717-8.
      34. Emsley HC, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ,
      et al; Acute Stroke Investigators. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005;76:1366–1372. doi: 10.1136/jnnp.2004.054882.
      35. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther. 2007;9:R96. doi: 10.1186/ar2297.
      36. Zhang Y, Wei X, Liu L, Liu S, Wang Z, Zhang B, et al. TIPE2, a novel regulator of immunity, protects against experimental stroke. J Biol Chem. 2012;287:32546–32555. doi: 10.1074/jbc.M112.348755.
      37. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 2015;35:11281–11291. doi: 10.1523/JNEUROSCI.1685-15.2015.
      38. Chaturvedi M, Kaczmarek L. MMP-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol. 2014;49:563–573. doi: 10.1007/s12035-013-8538-z.
      39. Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006;7:56. doi:10.1186/1471-2202-7-56.
      40. Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015;1623:30–38. doi: 10.1016/j.brainres.2015.04.024.
      41. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab. 2012;32:1317–1331. doi: 10.1038/jcbfm.2011.187.
      42. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem. 2009;109(suppl 1):133–138. doi: 10.1111/j.1471-4159.2009.05897.x.
      43. Armogida M, Nisticò R, Mercuri NB. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol. 2012;166:1211–1224. doi: 10.1111/j.1476-5381.2012.01912.x.
      44. Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, et al. Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis. 1999;9:112–118. doi: 10.1159/000015908.
      45. Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci. 2012;69:2345–2363. doi: 10.1007/s00018-012-1011-8.
      46. Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008;64:654–663. doi: 10.1002/ana.21511.
      47. Won SJ, Tang XN, Suh SW, Yenari MA, Swanson RA. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by increasing superoxide production. Ann Neurol. 2011;70:583–590. doi:10.1002/ana.22538.
      48. Chamorro á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflmmation. Lancet Neurol. 2016;15:869–881. doi: 10.1016/S1474-4422(16)00114-9.
      49. Green AR, Ashwood T. Free radical trapping as a therapeutic approach to neuroprotection in stroke: experimental and clinical studies with NXY-059 and free radical scavengers. Curr Drug Targets CNS Neurol Disord. 2005;4:109–118.
      50. Instrum R, Sun HS. Restoring neuroprotection through a new preclinical paradigm: translational success for NA-1 in stroke therapy. Acta Pharmacol Sin. 2013;34:3–5. doi: 10.1038/aps.2012.175.
      51. Kooijman R, Sarre S, Michotte Y, De Keyser J. Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke. 2009;40:e83–e88. doi: 10.1161/STROKEAHA.108.528356.
      52. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–e339. doi: 10.1161/STROKEAHA.108.531632.
      53. Fujimura M, Morita-FujimuraY, Noshita N, Sugawara T, Kawase M, Chan PH. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci. 2000;20:2817–2824.
      54. Althaus J, Siegelin MD, Dehghani F, Cilenti L, Zervos AS, Rami A. The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion. Neurochem Int.2007;50:172–180. doi: 10.1016/j.neuint.2006.07.018.
      55. Rosenbaum DM, Gupta G, D’Amore J, Singh M, Weidenheim K, Zhang H, et al. Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res. 2000;61:686–692. doi: 10.1002/1097-4547(20000915)61:6<686::AID-JNR12>3.0.CO;2-7.
      56. Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain:implications for neuroprotection. Brain Res Brain Res Rev. 2001;37:320–334.
      57. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci. 2012;13:267–278. doi: 10.1038/nrn3174.
      58. ChenJ, Liu L, Zhang H, Geng X, Jiao L, Li G, et al. Endovascular hypothermia in acute ischemic stroke: pilot study of selective intra-arterial cold saline infusion. Stroke. 2016;47:1933–1935. doi: 10.1161/STROKEAHA.116.012727.
      59. Langhauser F, Kraft P, G?b E, Leinweber J, Schuhmann MK, Lorenz K, et al. Blocking of α4 integrin does not protect from acute ischemic stroke in mice. Stroke. 2014;45:1799–1806. doi: 10.1161/STROKEAHA.114.005000.
      60. Elkins J, Veltkamp R, Montaner J, Johnston SC, Singhal AB, Becker K, et al. Safety and effiacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2017;16:217–226. doi: 10.1016/S1474-4422(16)30357-X.
      61. Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator figolimod on acute ischemic stroke. Proc Natl Acad Sci USA.2014;111:18315–18320. doi: 10.1073/pnas.1416166111.
      62. Amar AP, Griffi JH, Zlokovic BV. Combined neurothrombectomy or thrombolysis with adjunctive delivery of 3K3A-activated protein C in acute ischemic stroke. Front Cell Neurosci. 2015;9:344. doi: 10.3389/fncel.2015.00344.
      63. Cimino M, Gelosa P, Gianella A, Nobili E, Tremoli E, Sironi L. Statins:multiple mechanisms of action in the ischemic brain. Neuroscientist. 2007;13:208–213. doi: 10.1177/1073858406297121.
      64. Zhang S, Zhou Y, Zhang R, Zhang M, Campbell B, Lin L, et al. Rationale and design of combination of an immune modulator figolimod with alteplase bridging with mechanical thrombectomy in acute ischemic stroke (FAMTAIS) trial. Int J Stroke. 2017;12:906–909. doi: 10.1177/1747493017710340.

        本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
        轉(zhuǎn)藏 分享 獻花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多