如圖,拋物線y=﹣x2/2+3x/2+2與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q. (1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo); (2)求直線BD的解析式; (3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形; (4)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 考點(diǎn)分析: 二次函數(shù)綜合題. 題干分析: (1)根據(jù)函數(shù)解析式列方程即可得到結(jié)論; (2)由點(diǎn)C與點(diǎn)D關(guān)于x軸對(duì)稱,得到D(0,﹣2),解方程即可得到結(jié)論; (3)如圖1所示:根據(jù)平行四邊形的性質(zhì)得到QM=CD,設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m2/2+3m/2+2),則M(m,m/2﹣2),列方程即可得到結(jié)論; (4)設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m2/2+3m/2+2),分兩種情況:①當(dāng)∠QBD=90°時(shí),根據(jù)勾股定理列方程求得m=3,m=4(不合題意,舍去),②當(dāng)∠QDB=90°時(shí),根據(jù)勾股定理列方程求得m=8,m=﹣1,于是得到結(jié)論. |
|
來(lái)自: trader003 > 《數(shù)學(xué)》