乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      3000門徒內(nèi)部訓(xùn)練絕密視頻(泄密版)第1課:大數(shù)據(jù)最火爆語言Scala光速入門

       看風(fēng)景D人 2019-02-24

      scala 可以使用java的庫
      scala 的工廠方法:apply
      條件表達(dá)式有返回值
      數(shù)組可以用to ,箭頭 <-
      最后一行內(nèi)容的值是整個(gè)代碼塊的返回值
      def函數(shù) 定義函數(shù),調(diào)用不按順序
      函數(shù):def 函數(shù)名,參數(shù)名:類型名,可以設(shè)定默認(rèn)值,后可跟=號(hào),如def f1 ( param1:String, param2: Int = 30) = param1 + param2
      有默認(rèn)值的參數(shù)調(diào)用時(shí)可以不加參數(shù),另外調(diào)用時(shí)如果指定參數(shù)名的話可以不考慮參數(shù)順序。
      參數(shù)數(shù)量可變:def sum(numbers:Int*) *表示變長 調(diào)用時(shí)不可sum(0 to 100) ,因?yàn)? to 100是range類型,而參數(shù)中要求是變量,但是可以用 0 to 100 _* ,表示變成多個(gè)值

      過程:無返回值的函數(shù),定義函數(shù)返回值為Unit,在參數(shù)列表之后加上:Unit ,或者將函數(shù)定義后的=改變成花括號(hào)

      lazy 類型:第一次被定義時(shí)計(jì)算

      異常

      try {
          val content = fromFile("/usr/local/spark/sfijweoijgr/")
      }catch{
          case _: FileNotFoundException => println("Ooooops!!! File not found")
      } finally {
          println("Byebye world!")
      }

      集合
      數(shù)組val arr = new ArrayInt

      ArrayBuffer的insert,remove方法

      scala> val arr1 = Array("Scala","Spark")
      arr1: Array[String] = Array(Scala, Spark)
      
      scala> val arr1 = Array.apply("Scala","Spark")
      arr1: Array[String] = Array(Scala, Spark)
      
      scala> Array
      res3: Array.type = scala.Array$@54d18072
      
      scala> arr1(2) = "Hadoop"
      java.lang.ArrayIndexOutOfBoundsException: 2
        ... 33 elided
      
      scala> val arrbuf = ArrayBuffer[Int]()
      <console>:7: error: not found: value ArrayBuffer
             val arrbuf = ArrayBuffer[Int]()
                          ^
      
      scala> import scala.collection.mutable.A
      AVLIterator      AbstractIterable   AbstractSet   ArrayBuilder   ArraySeq     
      AVLTree          AbstractMap        AnyRefMap     ArrayLike      ArrayStack   
      AbstractBuffer   AbstractSeq        ArrayBuffer   ArrayOps                    
      
      scala> import scala.collection.mutable.Array
      ArrayBuffer   ArrayBuilder   ArrayLike   ArrayOps   ArraySeq   ArrayStack
      
      scala> import scala.collection.mutable.ArrayBu
      ArrayBuffer   ArrayBuilder
      
      scala> import scala.collection.mutable.ArrayBuffer
      import scala.collection.mutable.ArrayBuffer
      
      scala> val arrbuf = ArrayBuffer[Int]()
      arrbuf: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()
      
      scala> arrbuf += 10
      res5: arrbuf.type = ArrayBuffer(10)
      
      scala> arrbuf
      res6: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10)
      
      scala> arrbuf(1)
      java.lang.IndexOutOfBoundsException: 1
        at scala.collection.mutable.ResizableArray$class.apply(ResizableArray.scala:43)
        at scala.collection.mutable.ArrayBuffer.apply(ArrayBuffer.scala:48)
        ... 33 elided
      
      scala> arrbuf += ( 12,23,35,56)
      res8: arrbuf.type = ArrayBuffer(10, 12, 23, 35, 56)
      
      scala> arrbuf
      res9: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 56)
      
      scala> arrbuf ++= Array(1,2,3,4)
      <console>:1: error: illegal character '\uff08'
             arrbuf ++= Array(1,,2,3,4)
                             ^
      <console>:1: error: illegal character '\uff0c'
             arrbuf ++= Array(1,,2,3,4)
                               ^
      
      scala> arrbuf ++= Array(1,2,3,4)
      res10: arrbuf.type = ArrayBuffer(10, 12, 23, 35, 56, 1, 2, 3, 4)
      
      scala> arrbuf
      res11: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 56, 1, 2, 3, 4)
      
      scala> arrbuf.t
      tail        takeWhile   toIndexedSeq   toMap      toString        transpose   
      tails       to          toIterable     toSeq      toTraversable   trimEnd     
      take        toArray     toIterator     toSet      toVector        trimStart   
      takeRight   toBuffer    toList         toStream   transform                   
      
      scala> arrbuf.t
      tail        takeWhile   toIndexedSeq   toMap      toString        transpose   
      tails       to          toIterable     toSeq      toTraversable   trimEnd     
      take        toArray     toIterator     toSet      toVector        trimStart   
      takeRight   toBuffer    toList         toStream   transform                   
      
      scala> arrbuf.trim
      trimEnd   trimStart
      
      scala> arrbuf.trim
      trimEnd   trimStart
      
      scala> arrbuf.trimEnd(3)
      
      scala> arrbuf
      res13: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 56, 1)
      
      scala> arrbuf
      res14: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 56, 1)
      
      scala> arrbuf.in
      indexOf        indexWhere   init    insert      intersect   
      indexOfSlice   indices      inits   insertAll               
      
      scala> arrbuf.insert(4,100)
      
      scala> arrbuf
      res16: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 100, 56, 1)
      
      scala> arrbuf.insert(6,7,8,9)
      
      scala> arrbuf
      res18: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(10, 12, 23, 35, 100, 56, 7, 8, 9, 1)
      
      scala> arrbuf.remove(0)
      res19: Int = 10
      
      scala> arrbuf
      res20: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(12, 23, 35, 100, 56, 7, 8, 9, 1)
      
      scala> arrbuf.remove(1,2)
      
      scala> arrbuf
      res22: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(12, 100, 56, 7, 8, 9, 1)
      
      scala> val arr2 = arrbuf.toArray
      arr2: Array[Int] = Array(12, 100, 56, 7, 8, 9, 1)
      
      scala> arr2.toBuffer
      res23: scala.collection.mutable.Buffer[Int] = ArrayBuffer(12, 100, 56, 7, 8, 9, 1)
      
      scala> arr2.toString
         def toString(): String
      
      scala> arr2.toBuffer
      res24: scala.collection.mutable.Buffer[Int] = ArrayBuffer(12, 100, 56, 7, 8, 9, 1)
      
      scala> for ( elem <- arr2) { elem}
      
      scala> for ( elem <- arr2) {println(elem)}
      12
      100
      56
      7
      8
      9
      1
      
      scala> for( i <- 1 until (arr2.length,1)) println(arr2(i))
      100
      56
      7
      8
      9
      1
      
      scala> for( i <- 1 until (arr2.length,2)) println(arr2(i))
      100
      7
      9
      
      scala> for( i <- 0 until (arr2.length,2)) println(arr2(i))
      12
      56
      8
      1
      
      scala> for( i <- 0 until (arr2.length,2)) println(arr2(i))
      12
      56
      8
      1
      
      scala> arr2
      res31: Array[Int] = Array(12, 100, 56, 7, 8, 9, 1)
      
      scala> for(i <- (0 until arr2.length).reverse) println(arr2(i))
      1
      9
      8
      7
      56
      100
      12
      
      scala> import scala.util.Sorting._
      import scala.util.Sorting._
      
      scala> quickSort(arr2)
      
      scala> arr2
      res34: Array[Int] = Array(1, 7, 8, 9, 12, 56, 100)
      
      scala> val arr3 = for(i <- arr2) yield i*i
      arr3: Array[Int] = Array(1, 49, 64, 81, 144, 3136, 10000)
      
      scala> val arr4 = for(i <- arr2 if i%3 == 0) yield i*i
      arr4: Array[Int] = Array(81, 144)
      
      scala>  arr2.filter(_%3 ==0).map(i => i*i)
      res35: Array[Int] = Array(81, 144)
      
      scala>  arr2.filter{_%3 ==0}.map{i => i*i}
      res36: Array[Int] = Array(81, 144)
      
      scala>  arr2.filter{_%3 ==0}map{i => i*i}
      res3: Array[Int] = Array(144, 81)

      yield 把后面的每一個(gè)元素收集起來并組拼成一個(gè)集合

      作業(yè):刪掉數(shù)組中第一個(gè)負(fù)數(shù)后面的所有負(fù)數(shù)

      scala> val person = Map("Spark" ->6, "Hadoop" -> 11)
      person: scala.collection.immutable.Map[String,Int] = Map(Spark -> 6, Hadoop -> 11)
      
      scala> person("Hadoop")
      res4: Int = 11
      
      scala> val person = scala.collection.mutable.Map("Spark" ->6, "Hadoop" -> 11)
      person: scala.collection.mutable.Map[String,Int] = Map(Hadoop -> 11, Spark -> 6)
      
      scala> person += ("Flink" -> 5)
      res5: person.type = Map(Hadoop -> 11, Spark -> 6, Flink -> 5)
      
      scala> person -= "Flink"
      res6: person.type = Map(Hadoop -> 11, Spark -> 6)
      
      scala> val sparkValue = if (person.contains("Spark")) person("Spark") else 1000
      sparkValue: Int = 6
      
      scala> val sparkValue = person.getOrElse
      getOrElse   getOrElseUpdate
      
      scala> val sparkValue = person.getOrElse("Spark", 1000)
      sparkValue: Int = 6
      
      scala> val sparkValue = person.getOrElse("Flink", 1000)
      sparkValue: Int = 1000
      
      scala> for((key,value) <- person) println(key+":"+value)
      Hadoop:11
      Spark:6
      
      scala> for((key,value) <- person) println(key+":")
      Hadoop:
      Spark:
      
      scala> val person = scala.collection.mutable.S.Map("Spark" ->6, "Hadoop" -> 11)
      Seq          SetProxy        Subscriber                  SynchronizedSet     
      SeqLike      SortedSet       SynchronizedBuffer          SynchronizedStack   
      Set          Stack           SynchronizedMap                                 
      SetBuilder   StackProxy      SynchronizedPriorityQueue                       
      SetLike      StringBuilder   SynchronizedQueue                               
      
      scala> val person = scala.collection.immutable.S.Map("Spark" ->6, "Hadoop" -> 11)
      Seq   SetProxy    SortedSet   Stream           StreamView       StringLike   
      Set   SortedMap   Stack       StreamIterator   StreamViewLike   StringOps    
      
      scala> val person = scala.collection.immutable.SortedMap("Spark" ->6, "Hadoop" -> 11)
      person: scala.collection.immutable.SortedMap[String,Int] = Map(Hadoop -> 11, Spark -> 6)
      
      TUPLE:
      scala> val tuple = ("Spark", 6, 99.0)
      tuple: (String, Int, Double) = (Spark,6,99.0)
      
      scala> tuple._1
      res9: String = Spark
      
      scala> tuple._2
      res10: Int = 6
      
      scala> tuple._3
      res11: Double = 99.0

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多