微生物組研究中優(yōu)化方法和規(guī)避誤區(qū)2017年五月發(fā)表在Microbiome上的綜述,對(duì)于老司機(jī)會(huì)有很多共鳴,對(duì)于新人更要必讀,少走彎路。 微生物組學(xué)研究最大的問題:實(shí)驗(yàn)難重復(fù)。就像古希臘哲學(xué)家赫拉克利特說“人不能兩次踏進(jìn)同一條河流”。微生物組實(shí)時(shí)在變,己有文章表明動(dòng)、植物的細(xì)菌組在晝夜間都有10-20%的部分存在顯著的變化(Cell, 2015; Microbiome, 2016)。反之在自然界,研究對(duì)象的微生組每個(gè)月、每年有多大變化可想而知。因此實(shí)驗(yàn)室的的人工重組實(shí)驗(yàn)是目前可重復(fù)實(shí)驗(yàn)的主要手段。 對(duì)于研究自然對(duì)象的實(shí)驗(yàn),很多條件我們?cè)谝巴饣蜣r(nóng)田無法控制,如溫度、濕度、降雨等等,它們己知對(duì)微生物群落結(jié)果影響都非常大,但這些并不影響發(fā)現(xiàn)的真正自然規(guī)律。 在科學(xué)實(shí)驗(yàn)中最怕的不是當(dāng)前技術(shù)認(rèn)識(shí)的局限性而導(dǎo)致的誤差或錯(cuò)誤,而是由于人為知識(shí)和經(jīng)驗(yàn)不足采用了不合理或錯(cuò)誤方法,引入的假陽(yáng)性結(jié)果并把這些假陽(yáng)性結(jié)果當(dāng)成重大發(fā)現(xiàn)去發(fā)表。一般審稿人都是專業(yè),很容易把關(guān)實(shí)驗(yàn)設(shè)計(jì)和分析。但很多低水平雜志,根本找不到高水平的審稿人,大家就馬馬虎虎的審,再發(fā)表,再?zèng)]人看,錯(cuò)了也沒人知道。進(jìn)入了垃圾文章的怪圈。 我還是建議做課題前,還是至少讀相關(guān)文獻(xiàn)100篇,把握主流研究的技術(shù)體系,不至于有明顯錯(cuò)誤。讀10幾篇高水平綜述,比Articles更高效,快速學(xué)習(xí)別人總結(jié)的經(jīng)驗(yàn)。比如這篇文章指出了很多明顯的常見錯(cuò)誤,希望大家仔細(xì)閱讀,盡量避免,不要等到審稿人指出再改,實(shí)驗(yàn)可就真白做了。 摘要
微生物組實(shí)驗(yàn)計(jì)劃
圖1. 實(shí)例顯示不同籠子可以決定老鼠的真菌類型 考慮樣品收集和處理過程
圖2. 主坐標(biāo)軸分析表明不同儲(chǔ)存條件下菌群分析結(jié)果存在明顯差別
圖3. 試劑盒不同提取方式可導(dǎo)致明顯污染,其中胎盤樣本與負(fù)對(duì)照相似
圖4. 負(fù)對(duì)照可展示污染的菌種類
圖5. 合成非細(xì)菌的16S DNA作為正對(duì)照
圖6. 宏基因組測(cè)序中的污染 分析中要考慮的問題
英文摘要原文Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a wealth of experimental artifacts. Here, we present suggestions for optimizing experimental design and avoiding known pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on best practices for several sample types. We then discuss design and analysis of positive and negative controls, which should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample. Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and to comparing discovery and validation cohorts. We hope the experimental tactics summarized here will help researchers in this exciting field advance their studies efficiently while avoiding errors. Reference
|
|