小升初經(jīng)典奧數(shù)題與解析 一、解答題 1.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元? 考點(diǎn): 列方程解含有兩個未知數(shù)的應(yīng)用題;差倍問題。 專題: 和倍問題;列方程解應(yīng)用題。 分析: 設(shè)一把椅子的價格是x元,則一張桌子的價格就是10x元,根據(jù)等量關(guān)系:“一張桌子比一把椅子多288元”,列出方程即可解答. 解答: 解:設(shè)一把椅子的價格是x元,則一張桌子的價格就是10x元,根據(jù)題意可得方程: 10x﹣x=288, 9x=288, x=32; 則桌子的價格是:32×10=320(元), 答:一張桌子320元,一把椅子32元. 點(diǎn)評: 此題也可以用算術(shù)法計(jì)算:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10﹣1)倍,由此可求得一把椅子的價錢.再根據(jù)椅子的價錢,就可求得一張桌子的價錢,所以:一把椅子的價錢:288÷(10﹣1)=32(元)一張桌子的價錢:32×10=320(元);答:一張桌子320元,一把椅子32元. 2.3箱蘋果重45千克.一箱梨比一箱蘋果多5千克,3箱梨重多少千克? 考點(diǎn): 整數(shù)、小數(shù)復(fù)合應(yīng)用題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題。 分析: 可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量.據(jù)此解答 解答: 解:45+5×3, =45+15, =60(千克); 答:3箱梨重60千克. 點(diǎn)評: 本題的關(guān)鍵是先求出3箱梨比3箱蘋果多的重量,然后再根據(jù)加法的意義求出3箱梨的重量. 3.甲乙二人從兩地同時相對而行,經(jīng)過4小時,在距離中點(diǎn)4千米處相遇.甲比乙速度快,甲每小時比乙快多少千米? 考點(diǎn): 簡單的行程問題。 專題: 行程問題。 分析: 根據(jù)在距離中點(diǎn)4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過4小時相遇.即可求甲比乙每小時快多少千米. 解答: 解:4×2÷4 =8÷4, =2(千米); 答:甲每小時比乙快2千米. 點(diǎn)評: 解答此題的關(guān)鍵是確定甲比乙在4小時內(nèi)多走了多少千米,然后再根據(jù)路程÷時間=速度進(jìn)行計(jì)算即可. 4.李軍和張強(qiáng)付同樣多的錢買了同一種鉛筆,李軍要了13支,張強(qiáng)要了7支,李軍又給張強(qiáng)0.6元錢.每支鉛筆多少錢? 考點(diǎn): 整數(shù)、小數(shù)復(fù)合應(yīng)用題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題。 分析: 根據(jù)兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強(qiáng)要了7支,可知每人應(yīng)該得(13+7)÷2支,而李軍要了13支比應(yīng)得的多了3支,因此又給張強(qiáng)0.6元錢,即可求每支鉛筆的價錢.據(jù)此解答. 解答: 解:0.6÷[13﹣(13+7)÷2], =0.6÷[13﹣20÷2], =0.6÷3, =0.2(元); 答:每支鉛筆0.2元. 點(diǎn)評: 本題的關(guān)鍵是求出李軍給張強(qiáng)0.6元錢,是幾支鉛筆的價錢. 5.甲乙兩輛客車上午8時同時從兩個車站出發(fā),相向而行,經(jīng)過一段時間,兩車同時到達(dá)一條河 的兩岸.由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發(fā)的車站,到站時已是下午2點(diǎn).甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計(jì)) 考點(diǎn): 簡單的行程問題。 專題: 行程問題。 分析: 根據(jù)已知兩車上午8時從兩站出發(fā),下午2點(diǎn)返回原車站,可求出兩車所行駛的時間.根據(jù)兩車的速度和行駛的時間可求兩車行駛的總路程. 解答: 解:下午2點(diǎn)是14時. 往返用的時間:14﹣8=6(時) 兩地間路程:(40+45)×6÷2 =85×6÷2, =255(千米); 答:兩地相距255千米. 點(diǎn)評: 解答此題的關(guān)鍵是確定兩車行駛的時間,然后再根據(jù)公式速度×?xí)r間=路程計(jì)算出兩車行駛的總路程,再除以就是兩地相距的距離. 6.學(xué)校組織兩個課外興趣小組去郊外活動.第一小組每小時走4.5千米,第二小組每小時行3.5千米.兩組同時出發(fā)1小時后,第一小組停下來參觀一個果園,用了1小時,再去追第二小組.多長時間能追上第二小組? 考點(diǎn): 追及問題。 專題: 行程問題。 分析: 第一小組停下來參觀果園時間,第二小組多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一組要追趕的路程.又知第一組每小時比第二組快( 4.5﹣3.5)千米,由此便可求出追趕的時間. 解答: 解:第一組追趕第二組的路程: 3.5﹣(4.5﹣3.5), =3.5﹣1, =2.5(千米); 第一組追趕第二組所用時間: 2.5÷(4.5﹣3.5), =2.5÷1, =2.5(小時); 答:第一組2.5小時能追上第二小組. 點(diǎn)評: 此題屬于復(fù)雜的追擊應(yīng)用題,此類題的解答方法是根據(jù)“追及路程÷速度差=追及時間”,代入數(shù)值,計(jì)算即可 7.有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸.甲倉的存糧噸數(shù)比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸? 考點(diǎn): 列方程解含有兩個未知數(shù)的應(yīng)用題;和倍問題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題;和倍問題。 分析: 設(shè)乙倉庫的存糧是x噸,則甲倉庫的存糧是4x﹣5噸,則根據(jù)等量關(guān)系:“兩個倉庫的存糧一共有32.5×2=65噸”,由此列出方程解決問題. 解答: 解:設(shè)乙倉庫的存糧是x噸,則甲倉庫的存糧是4x﹣5噸,根據(jù)題意可得方程: x+4x﹣5=32.5×2, 5x=70, x=14, 則甲倉庫存糧:14×4﹣5=51(噸), 答:甲倉庫有51噸,乙倉庫有14噸. 點(diǎn)評: 此題屬于含有兩個未知數(shù)的應(yīng)用題,這類題用方程解答比較容易,關(guān)鍵是找準(zhǔn)數(shù)量間的相等關(guān)系,設(shè)一個未知數(shù)為x,另一個未知數(shù)用含x的式子來表示,進(jìn)而列并解方程即可. 8.甲、乙兩隊(duì)共同修一條長400米的公路,甲隊(duì)從東往西修4天,乙隊(duì)從西往東修5天,正好修完,甲隊(duì)比乙隊(duì)每天多修10米.甲、乙兩隊(duì)每天共修多少米? 考點(diǎn): 簡單的工程問題。 專題: 工程問題。 分析: 根據(jù)甲隊(duì)每天比乙隊(duì)多修10米,可以這樣考慮:如果把甲隊(duì)修的4天看作和乙隊(duì)4天修的同樣多,那么總長度就減少4個10米,這時的長度相當(dāng)于乙(4+5)天修的.由此可求出乙隊(duì)每天修的米數(shù),進(jìn)而再求兩隊(duì)每天共修的米數(shù). 解答: 解:乙每天修的米數(shù): (400﹣10×4)÷(4+5), =(400﹣40)÷9, =360÷9, =40(米); 甲乙兩隊(duì)每天共修的米數(shù): 40×2+10=80+10=90(米); 答:兩隊(duì)每天修90米. 點(diǎn)評: 本題不能直接求出甲乙的工作效率和,要采取假設(shè)法,假設(shè)甲乙的工作效率相同,找出由此引起的工作量的變化,再根據(jù)工作效率=工作量÷工作時間求解. 9.學(xué)校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元? 考點(diǎn): 簡單的等量代換問題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題。 分析: 已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應(yīng)減少30×6元,這時的總價相當(dāng)于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價. 解答: 解:每把椅子的價錢: (455﹣30×6)÷(6+5), =(455﹣180)÷11, =275÷11, =25(元); 每張桌子的價錢: 25+30=55(元); 答:每張桌子55元,每把椅子25元. 點(diǎn)評: 解答此題的關(guān)鍵是根據(jù)“每張桌子比每把椅子貴30元,”得出總價里面減去每張桌子多的30元,剩下的就相當(dāng)于是(6+5)=11把椅子的價格,從而求出椅子的價格即可解答問題. 10.一列火車和一列慢車,同時分別從甲乙兩地相對開出.快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米? 考點(diǎn): 簡單的行程問題。 專題: 行程問題。 分析: 根據(jù)已知的兩車的速度可求速度差,根據(jù)兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進(jìn)而求出甲乙兩地的路程. 解答: 解:(75+65)×[40÷(75﹣65)], =140×[40÷10], =140×4, =560(千米); 答:甲乙兩地相距560千米. 點(diǎn)評: 解題的關(guān)鍵是理解用快車比慢車多行的路程÷兩車的速度差=兩車行駛的時間,再根據(jù)速度和×兩車行駛的時間求出兩地的距離. 11.某玻璃廠托運(yùn)玻璃250箱,合同規(guī)定每箱運(yùn)費(fèi)20元,如果損壞一箱,不但不付運(yùn)費(fèi)還要賠償100元.運(yùn)后結(jié)算時,共付運(yùn)費(fèi)4400元.托運(yùn)中損壞了多少箱玻璃? 考點(diǎn): 盈虧問題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題。 分析: 根據(jù)已知托運(yùn)玻璃250箱,每箱運(yùn)費(fèi)20元,可求出應(yīng)付運(yùn)費(fèi)總錢數(shù).根據(jù)每損壞一箱,不但不付運(yùn)費(fèi)還要賠償100元的條件可知,則損壞一個就少收運(yùn)費(fèi)100+20元,應(yīng)付的錢數(shù)和實(shí)際付的錢數(shù)的差里有幾個(100+20)元,就是損壞幾箱. 解答: 解:(20×250﹣4400)÷(100+20), =600÷120, =5(箱) 答:損壞了5箱. 點(diǎn)評: 明確損壞一個就少收運(yùn)費(fèi)100+20元是完成本題的關(guān)鍵. 12.五年級一中隊(duì)和二中隊(duì)要到距學(xué)校20千米的地方去春游.第一中隊(duì)步行每小時行4千米,第二中隊(duì)騎自行車,每小時行12千米.第一中隊(duì)先出發(fā)2小時后,第二中隊(duì)再出發(fā),第二中隊(duì)出發(fā)后幾小時才能追上一中隊(duì)? 考點(diǎn): 追及問題。 專題: 行程問題。 分析: 因第一中隊(duì)早出發(fā)2小時比第二中隊(duì)先行4×2千米,即此時兩個中隊(duì)之間的距離是8千米,而每小時第二中隊(duì)比第一中隊(duì)多行(12﹣4)千米,由此即可求第二中隊(duì)追上第一中隊(duì)的時間. 解答: 解:4×2÷(12﹣4); =4×2÷8; =1(時); 答:第二中隊(duì)1小時能追上第一中隊(duì). 點(diǎn)評: 本題體現(xiàn)了追及問題的基本關(guān)系式:路程差÷速度差=追及時間. 13.某廠運(yùn)來一堆煤,如果每天燒1500千克,比計(jì)劃提前一天燒完,如果每天燒1000千克,將比計(jì)劃多燒一天.這堆煤有多少千克? 考點(diǎn): 有關(guān)計(jì)劃與實(shí)際比較的三步應(yīng)用題。 專題: 簡單應(yīng)用題和一般復(fù)合應(yīng)用題。 分析: 由已知條件可知道,前后燒煤總數(shù)量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原計(jì)劃燒的天數(shù),進(jìn)而再求出這堆煤的數(shù)量. 解答: 解:原計(jì)劃燒煤天數(shù): (1500+1000)÷(1500﹣1000), =2500÷500, =5(天); 這堆煤的重量: 1500×(5﹣1), =1500×4, =6000(千克); 答:這堆煤有6000千克. 點(diǎn)評: 解答此題的關(guān)鍵是求原計(jì)劃燒的天數(shù),用前后燒煤總數(shù)相差除以每天燒煤量之差即原計(jì)劃燒的天數(shù),進(jìn)而求出這堆煤的數(shù) |
|