乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      MIT腦洞研究!只聽6秒語音,就知道你長什么樣,效果好得不敢信

       書*金 2019-05-26

      邊策 問耕 發(fā)自 凹非寺

      量子位 出品 | 公眾號(hào) QbitAI

      500

       CSAIL所在的MIT Building 32

      只聽聲音,就能知道一個(gè)人長什么樣?

      是的。

      大名鼎鼎的麻省理工CSAIL(人工智能實(shí)驗(yàn)室),最近就發(fā)布了這樣一個(gè)令人驚訝的研究。只需要聽6秒的聲音片段,AI就能推斷出說話者的容貌。

      詳細(xì)解釋之前,咱們一起試試先。

      聽聽下面這段錄音,一共有六段。你能想象出來,說話的人長什么樣么?

      怎么樣?你行么?

      MIT研究人員,設(shè)計(jì)和訓(xùn)練的神經(jīng)網(wǎng)絡(luò)Speech2Face,就能通過短短的語音片段,推測(cè)出說話者的年齡、性別、種族等等多重屬性,然后重建說話人的面部。

      下面就是AI聽聲識(shí)臉,給出的結(jié)果:

      左邊一列是真實(shí)的照片,右邊一列是神經(jīng)網(wǎng)絡(luò)根據(jù)聲音推斷出來的長相。

      500

      講真,這個(gè)效果讓我們佩服。

      這篇論文也入圍了今年的學(xué)術(shù)頂級(jí)會(huì)議CVPR 2019。

      當(dāng)然這個(gè)研究也會(huì)引發(fā)一些隱私方面的擔(dān)憂。不過研究團(tuán)隊(duì)在論文中特別聲明,這個(gè)神經(jīng)網(wǎng)絡(luò)不追求完全精確還原單一個(gè)體的臉部圖像。

      不同的語言也有影響。論文中舉了一個(gè)案例,同一男子分別說中文和英文,AI卻分別還原出了不同的面孔樣貌。當(dāng)然,這也跟口音、發(fā)聲習(xí)慣等相關(guān)。

      另外,研究團(tuán)隊(duì)也表示,目前這套系統(tǒng)對(duì)還原白人和東亞人的面孔效果更好??赡苡捎谟《群秃谌说臄?shù)據(jù)較少,還原效果還有待進(jìn)一步提高。

      原理

      從聲音推斷一個(gè)人的長相不是一種玄學(xué),平時(shí)我們?cè)诖螂娫挄r(shí)會(huì)根據(jù)對(duì)方的聲音腦補(bǔ)出相貌特征。

      這是因?yàn)椋挲g、性別、嘴巴形狀、面部骨骼結(jié)構(gòu),所有這些都會(huì)影響人發(fā)出的聲音。此外,語言、口音、速度通常會(huì)體現(xiàn)出一個(gè)的民族、地域、文化特征。

      AI正是根據(jù)語音和相貌的關(guān)聯(lián)性做出推測(cè)。

      為此,研究人員提取了幾百萬個(gè)YouTube視頻,通過訓(xùn)練,讓深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)聲音和面部的相關(guān)性,找到說話的人一些基本特征,比如年齡、性別、種族等,并還原出相貌。

      而且在這個(gè)過程中,不需要人類標(biāo)記視頻,由模型自我監(jiān)督學(xué)習(xí)。這就是文章中所說的Speech2Face模型。

      將電話另一端通過卡通人物的方式顯示在你的手機(jī)上,可能是Speech2Face未來的一種實(shí)際應(yīng)用。

      500

      模型結(jié)構(gòu)

      Speech2Face模型是如何還原人臉的,請(qǐng)看下圖:

      500

      給這個(gè)網(wǎng)絡(luò)輸入一個(gè)復(fù)雜的聲譜圖,它將會(huì)輸出4096-D面部特征,然后使用預(yù)訓(xùn)練的面部解碼器將其還原成面部的標(biāo)準(zhǔn)圖像。

      訓(xùn)練模塊在圖中用橙色部分標(biāo)記。在訓(xùn)練過程中,Speech2Face模型不會(huì)直接用人臉圖像與原始圖像進(jìn)行對(duì)比,而是與原始圖像的4096-D面部特征對(duì)比,省略了恢復(fù)面部圖像的步驟。

      在訓(xùn)練完成后,模型在推理過程中才會(huì)使用面部解碼器恢復(fù)人臉圖像。

      訓(xùn)練過程使用的是AVSpeech數(shù)據(jù)集,它包含幾百萬個(gè)YouTube視頻,超過10萬個(gè)人物的語音-面部數(shù)據(jù)。

      在具體細(xì)節(jié)上,研究使用的中每個(gè)視頻片段開頭最多6秒鐘的音頻,并從中裁剪出人臉面部趨于,調(diào)整到224×224像素。

      500

      從原始圖像提取特征重建的人臉,以及從聲音推測(cè)的人臉

      之前,也有人研究過聲音推測(cè)面部特征,但都是從人的聲音預(yù)測(cè)一些屬性,然后從數(shù)據(jù)庫中獲取最適合預(yù)測(cè)屬性的圖像,或者使用這些屬性來生成圖像。

      然而,這種方法存在局限性,需要有標(biāo)簽來監(jiān)督學(xué)習(xí),系統(tǒng)的魯棒性也較差。

      由于人臉圖像中面部表情、頭部姿態(tài)、遮擋和光照條件的巨大變化,想要獲得穩(wěn)定的輸出結(jié)果,Speech2Face人臉模型的設(shè)計(jì)和訓(xùn)練變得非常重要。

      一般從輸入語音回歸到圖像的簡(jiǎn)單方法不起作用,模型必須學(xué)會(huì)剔除數(shù)據(jù)中許多不相關(guān)的變化因素,并隱含地提取人臉有意義的內(nèi)部表示。

      為了解決這些困難,模型不是直接得到人臉圖像,而是回歸到人臉的低維中間表示。更具體地說,是利用人臉識(shí)別模型VGG-Face,并從倒數(shù)第二層的網(wǎng)絡(luò)提取一個(gè)4096-D面部特征。

      模型的pipeline由兩個(gè)主要部分組成:

      1、語音編碼器

      語音編碼器模塊是一個(gè)CNN,將輸入的語音聲譜圖轉(zhuǎn)換成偽人臉特征,并預(yù)測(cè)面部的低維特征,隨后將其輸入人臉解碼器以重建人臉圖像。

      2、面部解碼器

      面部解碼器的輸入為低維面部特征,并以標(biāo)準(zhǔn)形式(正面和中性表情)產(chǎn)生面部圖像。

      在訓(xùn)練過程中,人臉解碼器是固定的,只訓(xùn)練預(yù)測(cè)人臉特征的語音編碼器。語音編碼器是作者自己設(shè)計(jì)和訓(xùn)練的模型,而面部解碼器使用的是前人提出的模型。

      將實(shí)驗(yàn)結(jié)果更進(jìn)一步,Speech2Face還能用于人臉檢索。把基于語音的人臉預(yù)測(cè)結(jié)果與數(shù)據(jù)庫中的人臉進(jìn)行比較,系統(tǒng)將給出5個(gè)最符合的人臉照片。

       

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多