乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      python – 張量流中兩點(diǎn)云之間的倒角距離

       印度阿三17 2019-07-10

      我試圖在張量流中實(shí)現(xiàn)倒角距離.

      但是,我的代碼將輸入視為numpy數(shù)組.要將numpy轉(zhuǎn)換為張量,我們需要運(yùn)行一個(gè)會(huì)話,但該過程已經(jīng)在另一個(gè)會(huì)話中.我認(rèn)為兩個(gè)會(huì)話不能并行運(yùn)行.

      那么,任何人都可以幫我在tensorflow中實(shí)現(xiàn)倒角距離或幫助我解決這兩個(gè)同步會(huì)話的問題嗎?

      我的代碼是:

      def chamfer_distance(array1,array2):
          # final = 0
          # final = tf.cast(final,tf.float32)
          batch_size = array1.get_shape()[0].value
          num_point = array1.get_shape()[1].value
          sess = tf.Session()
          arr1,arr2 = sess.run([array1,array2])
          del sess
          dist = 0
          for i in range(batch_size):
              tree1 = KDTree(arr1[i], leafsize=num_point 1)
              tree2 = KDTree(arr2[i], leafsize=num_point 1)
              distances1, _ = tree1.query(arr2[i])
              distances2, _ = tree2.query(arr1[i])
              distances1 = tf.convert_to_tensor(distances1)
              distances2 = tf.convert_to_tensor(distances2)
              av_dist1 = tf.reduce_mean(distances1)
              av_dist2 = tf.reduce_mean(distances2)
              dist = dist   (av_dist1 av_dist2)/batch_size
          return dist
      

      解決方法:

      我已經(jīng)實(shí)現(xiàn)了TF版倒角距離:

      def distance_matrix(array1, array2):
          """
          arguments: 
              array1: the array, size: (num_point, num_feature)
              array2: the samples, size: (num_point, num_feature)
          returns:
              distances: each entry is the distance from a sample to array1
                  , it's size: (num_point, num_point)
          """
          num_point, num_features = array1.shape
          expanded_array1 = tf.tile(array1, (num_point, 1))
          expanded_array2 = tf.reshape(
                  tf.tile(tf.expand_dims(array2, 1), 
                          (1, num_point, 1)),
                  (-1, num_features))
          distances = tf.norm(expanded_array1-expanded_array2, axis=1)
          distances = tf.reshape(distances, (num_point, num_point))
          return distances
      
      def av_dist(array1, array2):
          """
          arguments:
              array1, array2: both size: (num_points, num_feature)
          returns:
              distances: size: (1,)
          """
          distances = distance_matrix(array1, array2)
          distances = tf.reduce_min(distances, axis=1)
          distances = tf.reduce_mean(distances)
          return distances
      
      def av_dist_sum(arrays):
          """
          arguments:
              arrays: array1, array2
          returns:
              sum of av_dist(array1, array2) and av_dist(array2, array1)
          """
          array1, array2 = arrays
          av_dist1 = av_dist(array1, array2)
          av_dist2 = av_dist(array2, array1)
          return av_dist1 av_dist2
      
      def chamfer_distance_tf(array1, array2):
          batch_size, num_point, num_features = array1.shape
          dist = tf.reduce_mean(
                     tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
                 )
          return dist
      

      為了驗(yàn)證目的,我還實(shí)現(xiàn)了一個(gè)sklearn版本:

      def chamfer_distance_sklearn(array1,array2):
          batch_size, num_point = array1.shape[:2]
          dist = 0
          for i in range(batch_size):
              tree1 = KDTree(array1[i], leaf_size=num_point 1)
              tree2 = KDTree(array2[i], leaf_size=num_point 1)
              distances1, _ = tree1.query(array2[i])
              distances2, _ = tree2.query(array1[i])
              av_dist1 = np.mean(distances1)
              av_dist2 = np.mean(distances2)
              dist = dist   (av_dist1 av_dist2)/batch_size
          return dist
      

      也是一個(gè)numpy版本:

      def array2samples_distance(array1, array2):
          """
          arguments: 
              array1: the array, size: (num_point, num_feature)
              array2: the samples, size: (num_point, num_feature)
          returns:
              distances: each entry is the distance from a sample to array1 
          """
          num_point, num_features = array1.shape
          expanded_array1 = np.tile(array1, (num_point, 1))
          expanded_array2 = np.reshape(
                  np.tile(np.expand_dims(array2, 1), 
                          (1, num_point, 1)),
                  (-1, num_features))
          distances = LA.norm(expanded_array1-expanded_array2, axis=1)
          distances = np.reshape(distances, (num_point, num_point))
          distances = np.min(distances, axis=1)
          distances = np.mean(distances)
          return distances
      
      def chamfer_distance_numpy(array1, array2):
          batch_size, num_point, num_features = array1.shape
          dist = 0
          for i in range(batch_size):
              av_dist1 = array2samples_distance(array1[i], array2[i])
              av_dist2 = array2samples_distance(array2[i], array1[i])
              dist = dist   (av_dist1 av_dist2)/batch_size
          return dist
      

      您可以使用以下腳本驗(yàn)證結(jié)果:

      batch_size = 8
      num_point = 20
      num_features = 4
      np.random.seed(1)
      array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
      array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
      
      print('sklearn: ', chamfer_distance_sklearn(array1, array2))
      print('numpy: ', chamfer_distance_numpy(array1, array2))
      
      array1_tf = tf.constant(array1, dtype=tf.float64)
      array2_tf = tf.constant(array2, dtype=tf.float64)
      dist_tf = chamfer_distance_tf(array1_tf, array2_tf)
      
      with tf.Session() as sess:
          print('tf: ', sess.run(dist_tf))
      
      來源:https://www./content-1-315451.html

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多