乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      小白可上手,自制動圖展示連續(xù)數(shù)據(jù)

       祥強(qiáng)6csdm0n3vs 2019-08-23

      這是ggplot中十分可愛的一個擴(kuò)增包,目的只有一個,就是讓你的圖動起來!就是醬紫??!

      gganimate擴(kuò)展了ggplot2實現(xiàn)的圖形語法,包括動畫描述。它通過提供一系列新的語法類來實現(xiàn)這一點,這些類可以添加到繪圖對象中,以便自定義它應(yīng)該如何隨時間變化。

      下面是他的parameter:

      transition_*()定義了數(shù)據(jù)應(yīng)該如何展開以及它與時間的關(guān)系。
      view_*()定義位置比例應(yīng)如何沿動畫更改。
      shadow_*()定義如何在給定的時間點呈現(xiàn)來自其他時間點的數(shù)據(jù)。
      enter_*()/ exit_*()定義新數(shù)據(jù)應(yīng)如何顯示以及舊數(shù)據(jù)在動畫過程中應(yīng)如何消失。
      ease_aes()定義了在過渡期間應(yīng)該如何進(jìn)行過渡。

      舉個栗子!

      #安裝輔助包,該包有兩個版本,已經(jīng)更新為最新版本,老版本在未來將不再支持。install.packages('gganimate')

      # 安裝開發(fā)版
      # install.packages('devtools')
      # devtools::install_github('thomasp85/gganimate')
      library(ggplot2)
      library(gganimate)

      ggplot(mtcars, aes(factor(cyl), mpg)) +
      geom_boxplot() + geom_point() +
      # Here comes the gganimate code
      transition_states(
      gear,
      transition_length = 2,
      state_length = 1
      ) +
      enter_fade() +
      exit_shrink() +
      ease_aes('sine-in-out')

      加載時間是比較長的,需要耐心等待哈!

      Yet Another Example

      首先查看一下數(shù)據(jù)格式吧,Gapminder是關(guān)于預(yù)期壽命,人均國內(nèi)生產(chǎn)總值和國家人口的數(shù)據(jù)摘錄。

      library(gapminder)
      head(gapminder)#我們看一下數(shù)據(jù)格式

      ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
      #點的大小和顏色分別由pop和country決定;geom_point(alpha = 0.7, show.legend = FALSE) +
      scale_colour_manual(values = country_colors) + #進(jìn)行數(shù)值之間的映射
      scale_size(range = c(2, 12)) + #設(shè)置繪圖符號大小
      scale_x_log10() + #連續(xù)數(shù)據(jù)位置的標(biāo)準(zhǔn)化
      facet_wrap(~continent) + #按照continent進(jìn)行分類
      # Here comes the gganimate specific bits
      labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
      transition_time(year) +
      ease_aes('linear')#指數(shù)據(jù)變化的狀態(tài),線性發(fā)展比較緩慢

      哈哈哈,現(xiàn)在我們以腫瘤數(shù)據(jù)為例進(jìn)行演示一下:

      我編了一組測試數(shù)據(jù),其中將腫瘤分為I,II,III型,IV型為control,然后分別顯示了再不同樣本中不同腫瘤分型下的部分基因的表達(dá)情況。

      library(ggplot2)
      library(gganimate)
      #首先我們進(jìn)行數(shù)據(jù)的讀入

      data <- 'subgroup,sample,gene,expression
      I,Tumor,p53,12.725952
      II,Tumor,p53,11.914176
      III,Tumor,p53,12.315768
      IV,Normal,p53,12.978894
      I,Tumor,p53,11.93924
      II,Tumor,p53,12.262185
      III,Tumor,p53,11.538924
      IV,Normal,p53,12.016589
      I,Tumor,p53,12.302574
      II,Tumor,p53,11.939233
      III,Tumor,p53,12.803992
      IV,Normal,p53,10.674506
      I,Tumor,p53,12.569142
      II,Tumor,p53,12.088496
      III,Tumor,p53,9.971951
      IV,Normal,p53,13.008554
      I,Tumor,p53,12.804154
      II,Tumor,p53,11.847107
      III,Tumor,p53,12.081261
      IV,Normal,p53,12.158431
      I,Tumor,p53,11.096693
      II,Tumor,p53,12.655811
      III,Tumor,p53,11.509067
      IV,Normal,p53,12.523573
      I,Tumor,p53,11.3554
      II,Tumor,p53,11.560566
      III,Tumor,p53,10.969046
      IV,Normal,p53,11.169892
      I,Tumor,p53,12.884054
      II,Tumor,p53,12.284268
      III,Tumor,her2,9.575523
      IV,Normal,her2,12.409381
      I,Tumor,her2,12.114364
      II,Tumor,her2,11.493997
      III,Tumor,her2,10.987106
      IV,Normal,her2,11.943991
      I,Tumor,her2,11.171378
      II,Tumor,her2,13.120248
      III,Tumor,her2,12.628872
      IV,Normal,her2,11.91914
      I,Tumor,her2,12.36504
      II,Tumor,her2,12.707354
      III,Tumor,her2,12.54517
      IV,Normal,her2,12.199749
      I,Tumor,her2,13.184496
      II,Tumor,her2,12.640412
      III,Tumor,her2,12.716897
      IV,Normal,her2,13.359091
      I,Tumor,her2,11.760945
      II,Tumor,her2,11.406367
      III,Tumor,her2,11.984382
      IV,Normal,her2,12.254977
      I,Tumor,her2,11.579763
      II,Tumor,her2,11.983042
      III,Tumor,her2,12.566317
      IV,Normal,her2,10.869331
      I,Tumor,her2,10.910963
      II,Tumor,her2,11.948207
      III,Tumor,myc,12.363072
      IV,Normal,myc,12.755182
      I,Tumor,myc,11.922223
      II,Tumor,myc,9.618839
      III,Tumor,myc,12.693868
      IV,Normal,myc,13.40685
      I,Tumor,myc,11.871609
      II,Tumor,myc,11.783704
      III,Tumor,myc,12.485053
      IV,Normal,myc,12.669123
      I,Tumor,myc,11.653691
      II,Tumor,myc,11.675768
      III,Tumor,myc,12.744605
      IV,Normal,myc,12.911619
      I,Tumor,myc,12.008307
      II,Tumor,myc,11.838161
      III,Tumor,myc,12.590989
      IV,Normal,myc,11.680278
      I,Tumor,myc,11.719241
      II,Tumor,myc,10.156746
      III,Tumor,myc,11.84406
      IV,Normal,myc,12.975393
      I,Tumor,myc,10.963332
      II,Tumor,myc,12.338216
      III,Tumor,myc,12.030859
      IV,Normal,myc,11.119114
      I,Tumor,myc,12.661349
      II,Tumor,myc,13.168166
      III,Tumor,myc,11.707595
      IV,Normal,myc,12.06719
      I,Tumor,myc,12.463962
      II,Tumor,myc,12.288819
      III,Tumor,myc,12.036757
      IV,Normal,myc,12.98055
      I,Tumor,myc,11.343075
      II,Tumor,myc,12.565481
      III,Tumor,myc,12.279996
      IV,Normal,myc,12.965189
      I,Tumor,myc,12.946155
      II,Tumor,myc,11.688462
      III,Tumor,sox4,11.944477
      IV,Normal,sox4,12.128177
      I,Tumor,sox4,11.116105
      II,Tumor,sox4,11.148871
      III,Tumor,sox4,13.139244
      IV,Normal,sox4,10.043207
      I,Tumor,sox4,12.043914
      II,Tumor,sox4,9.990576
      III,Tumor,sox4,11.624263
      IV,Normal,sox4,11.647402
      I,Tumor,sox4,12.502176
      II,Tumor,sox4,12.291812
      III,Tumor,sox4,11.421913
      IV,Normal,sox4,12.282511
      I,Tumor,sox4,12.511991
      II,Tumor,sox4,12.285322
      III,Tumor,sox4,11.7884
      IV,Normal,sox4,13.747552
      I,Tumor,sox4,11.212993
      II,Tumor,sox4,12.936845
      III,Tumor,sox4,12.442484
      IV,Normal,sox4,10.324288
      I,Tumor,sox4,12.436421
      II,Tumor,sox4,11.923122
      III,Tumor,sox4,12.831474
      IV,Normal,sox4,12.271537
      I,Tumor,sox4,12.208086
      II,Tumor,sox4,11.830799
      III,Tumor,sox4,12.410238
      IV,Normal,sox4,12.13912
      I,Tumor,sox4,12.47'

      test <- read.csv(text=data,header=T)
      head(test)

      library(ggplot2)
      ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+
      geom_boxplot()+
      geom_jitter()+
      theme_bw() #按照subgroup進(jìn)行分型,并畫出箱式圖

      同樣對不同gene在各組中的分布情況進(jìn)行描述:

      library(ggplot2)
      p <- ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+
      geom_boxplot()+
      geom_jitter()+
      theme_bw()
      p +facet_grid(.~gene)#按照gene對各個小組進(jìn)行分類

      library(ggplot2)
      library(gganimate)
      p <- ggplot(test,aes(x=subgroup,y=expression,fill=subgroup))+
      geom_boxplot()+
      geom_jitter()+
      theme_bw()
      p +transition_states(gene, state_length = 0)+
      labs(title = '{closest_state} expression')

        本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多