一直想把這幾個插值公式用代碼實現(xiàn)一下,今天閑著沒事,嘗試嘗試。
先從最簡單的拉格朗日插值開始!關于拉格朗日插值公式的基礎知識就不贅述,百度上一搜一大堆。
基本思路是首先從文件讀入給出的樣本點,根據(jù)輸入的插值次數(shù)和想要預測的點的x選擇合適的樣本點區(qū)間,最后計算基函數(shù)得到結(jié)果。直接看代碼?。ㄗⅲ哼@里說樣本點不是很準確,實在詞窮找不到一個更好的描述。。。)
str2double
一個小問題就是怎樣將python中的str類型轉(zhuǎn)換成float類型,畢竟我們給出的樣本點不一定總是整數(shù),而且也需要做一些容錯處理,比如多個 、多個-等等,也應該能識別為正確的數(shù)。所以實現(xiàn)了一個str2double方法。
import re
def str2double(str_num):
pattern = re.compile(r'^((\ *)|(\-*))?(\d )(.(\d ))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == ' ' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\ )|(\- )', "", m.group(0))
matchObj = re.match(r'^\d $', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d ).(\d )$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer fraction)
return num
我使用了正則表達式來實現(xiàn),pattern = re.compile(r'^((\ *)|(\-*))?(\d )(.(\d ))?$') 可以匹配我上面提到的所有類型的整數(shù)和浮點數(shù),之后進行匹配,匹配成功,如果是整數(shù),直接return整數(shù)部分,這個用(int) 強制轉(zhuǎn)換即可;如果是浮點數(shù),那么用(\d ) 這個正則表達式再次匹配,分別得到整數(shù)部分和小數(shù)部分,整數(shù)部分的處理和上面類似,小數(shù)部分則用乘以pow(10, -小數(shù)位數(shù)) 得到,之后直接相加即可。這里為了支持多個 或者-,使用re.sub方法將符號去掉,所以就需要用sign來記錄數(shù)字的正負,在最后return時乘上sign即可。
binary_search
def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first last) // 2
if point_set[mid][0] < x:
first = mid 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1
head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail = 1
return [head 1, tail-1] if n == 0 else [head 1, tail-2]
這里point_set是全部樣本點的集合,n是輸入的插值次數(shù),x是輸入的預測點。返回合適的插值區(qū)間,即盡可能地把x包在里面。
因為要根據(jù)輸入得到合適的插值區(qū)間,所以就涉及查找方面的知識。這里使用了二分查找,先對樣本點集合point_set 進行排序(升序),找到第一個大于需要預測點的樣本點,在它的兩側(cè)擴展區(qū)間,直到滿足插值次數(shù)要求。這里我的實現(xiàn)有些問題,可能會出現(xiàn)n=-1 因為tail 多加了一次,就在while 循環(huán)外又進行了一次判斷,n=-1 時tail-2 ,這個實現(xiàn)的確不好,可能還會有bug。。。
最后,剩下的內(nèi)容比較好理解,直接放上全部代碼。
import re
import matplotlib.pyplot as plt
import numpy as np
def str2double(str_num):
pattern = re.compile(r'^((\ *)|(\-*))?(\d )(.(\d ))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == ' ' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\ )|(\- )', "", m.group(0))
matchObj = re.match(r'^\d $', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d ).(\d )$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer fraction)
return num
def preprocess():
f = open("input.txt", "r")
lines = f.readlines()
lines = [line.strip('\n') for line in lines]
point_set = list()
for line in lines:
point = list(filter(None, line.split(" ")))
point = [str2double(pos) for pos in point]
point_set.append(point)
return point_set
def lagrangeFit(point_set, x):
res = 0
for i in range(len(point_set)):
L = 1
for j in range(len(point_set)):
if i == j:
continue
else:
L = L * (x - point_set[j][0]) / (point_set[i][0] - point_set[j][0])
L = L * point_set[i][1]
res = L
return res
def showbasis(point_set):
print("Lagrange Basis Function:\n")
for i in range(len(point_set)):
top = ""
buttom = ""
for j in range(len(point_set)):
if i == j:
continue
else:
top = "(x-{})".format(point_set[j][0])
buttom = "({}-{})".format(point_set[i][0], point_set[j][0])
print("Basis function{}:".format(i))
print("\t\t{}".format(top))
print("\t\t{}".format(buttom))
def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first last) // 2
if point_set[mid][0] < x:
first = mid 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1
head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail = 1
return [head 1, tail-1] if n == 0 else [head 1, tail-2]
if __name__ == '__main__':
pred_x = input("Predict x:")
pred_x = float(pred_x)
n = input("Interpolation times:")
n = int(n)
point_set = preprocess()
point_set = sorted(point_set, key=lambda a: a[0])
span = binary_search(point_set, n 1, pred_x)
print("Chosen points: {}".format(point_set[span[0]:span[1] 1]))
showbasis(point_set[span[0]:span[1] 1])
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
S = np.sin(X)
L = [lagrangeFit(point_set, x) for x in X]
L1 = [lagrangeFit(point_set[span[0]:span[1] 1], x) for x in X]
plt.figure(figsize=(8, 4))
plt.plot(X, S, label="$sin(x)$", color="red", linewidth=2)
plt.plot(X, L, label="$LagrangeFit-all$", color="blue", linewidth=2)
plt.plot(X, L1, label="$LagrangeFit-special$", color="green", linewidth=2)
plt.xlabel('x')
plt.ylabel('y')
plt.title("$sin(x)$ and Lagrange Fit")
plt.legend()
plt.show()
使用了input.txt進行樣本點讀入,每一行一個點,中間有一個空格。

結(jié)果


感覺挺好玩的hhh,過幾天試試牛頓插值!掰掰!
來源:https://www./content-1-512551.html
|