乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

       ~海龍~ 2019-11-28

      個(gè)人PC電源稱之為開關(guān)電源(Switching Mode Power Supplies,簡(jiǎn)稱SMPS),下面將會(huì)為您解讀PC開關(guān)電源的工作模式和原理、開關(guān)電源內(nèi)部的元器件的介紹以及這些元器件的功能。

      下圖3和4描述的是開關(guān)電源的PWM反饋機(jī)制。圖3描述的是沒有PFC(Power Factor Correction,功率因素校正) 電路的廉價(jià)電源,圖4描述的是采用主動(dòng)式PFC設(shè)計(jì)的中高端電源。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      圖3:沒有PFC電路的電源

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      圖4:有PFC電路的電源

      通過(guò)圖3和圖4的對(duì)比我們可以看出兩者的不同之處:一個(gè)具備主動(dòng)式PFC電路而另一個(gè)不具備,前者沒有110/220 V轉(zhuǎn)換器,而且也沒有電壓倍壓電路。下文我們的重點(diǎn)將會(huì)是主動(dòng)式PFC電源的講解。

      為了能夠更好的理解電源的工作原理,以上我們提供的是非?;镜膱D解,圖中并未包含其他額外的電路,比如說(shuō)短路保護(hù)、待機(jī)電路以及PG信號(hào)發(fā)生器等等。當(dāng)然了,如果您還想了解一下更加詳盡的圖解,請(qǐng)看圖5。如果看不懂也沒關(guān)系,因?yàn)檫@張圖本來(lái)就是為那些專業(yè)電源設(shè)計(jì)人員看的。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      圖5:典型的低端ATX電源設(shè)計(jì)圖

      你可能會(huì)問(wèn),圖5設(shè)計(jì)圖中為什么沒有電壓整流電路?事實(shí)上,PWM電路已經(jīng)肩負(fù)起了電壓整流的工作。輸入電壓在經(jīng)過(guò)開關(guān)管之前將會(huì)再次校正,而且進(jìn)入變壓器的電壓已經(jīng)成為方形波。所以,變壓器輸出的波形也是方形波,而不是正弦波。由于此時(shí)波形已經(jīng)是方形波,所以電壓可以輕而易舉的被變壓器轉(zhuǎn)換為DC直流電壓。也就是說(shuō),當(dāng)電壓被變壓器重新校正之后,輸出電壓已經(jīng)變成了DC直流電壓。這就是為什么很多時(shí)候開關(guān)電源經(jīng)常會(huì)被稱之為DC-DC轉(zhuǎn)換器。

      饋送PWM控制電路的回路負(fù)責(zé)所有需要的調(diào)節(jié)功能。如果輸出電壓錯(cuò)誤時(shí),PWM控制電路就會(huì)改變工作周期的控制信號(hào)以適應(yīng)變壓器,最終將輸出電壓校正過(guò)來(lái)。這種情況經(jīng)常會(huì)發(fā)生在PC功耗升高的時(shí),此時(shí)輸出電壓趨于下降,或者PC功耗下降的時(shí),此時(shí)輸出電壓趨于上升。

      電源內(nèi)部揭秘

      當(dāng)你第一次打開一臺(tái)電源后(確保電源線沒有和市電連接,否則會(huì)被電到),你可能會(huì)被里面那些奇奇怪怪的元器件搞得暈頭轉(zhuǎn)向,但是有兩樣?xùn)|西你肯定認(rèn)識(shí):電源風(fēng)扇和散熱片。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      開關(guān)電源內(nèi)部

      但是您應(yīng)該很容易就能分辨出電源內(nèi)部哪些元器件屬于一次側(cè),哪些屬于二次側(cè)。一般來(lái)講,如果你看到一個(gè)(采用主動(dòng)式PFC電路的電源)或者兩個(gè)(無(wú)PFC電路的電源)很大的濾波電容的話,那一側(cè)就是一次側(cè)。

      一般情況下,再電源的兩個(gè)散熱片之間都會(huì)安排3個(gè)變壓器,比如說(shuō)圖7所示,主變壓器是最大個(gè)的那顆;中等“體型”的那顆往往負(fù)責(zé)+5VSB輸出,而最小的那顆一般用于PWM控制電路,主要用于隔離一次側(cè)和二次側(cè)部分(這也是為什么在上文圖3和圖4中的變壓器上貼著“隔離器”的標(biāo)簽)。有些電源并不把變壓器當(dāng)“隔離器”來(lái)用,而是采用一顆或者多顆光耦(看起來(lái)像是IC整合芯片),也即說(shuō)采用這種設(shè)計(jì)方案的電源只有兩個(gè)變壓器——主變壓器和輔變壓器。

      電源內(nèi)部一般都有兩個(gè)散熱片,一個(gè)屬于一次側(cè),另一個(gè)屬于二次側(cè)。如果是一臺(tái)主動(dòng)式PFC電源,那么它的在一次側(cè)的散熱片上,你可以看到開關(guān)管、PFC晶體管以及二極管。這也不是絕對(duì)的,因?yàn)橐灿行S商可能會(huì)選擇將主動(dòng)式PFC組件安裝到獨(dú)立的散熱片上,此時(shí)在一次側(cè)會(huì)有兩個(gè)散熱片。

      在二次側(cè)的散熱片上,你會(huì)發(fā)現(xiàn)有一些整流器,它們看起來(lái)和三極管有點(diǎn)像,但事實(shí)上,它們都是有兩顆功率二極管組合而成的。

      在二次側(cè)的散熱片旁邊,你還會(huì)看到很多電容和電感線圈,共同共同組成了低壓濾波模塊——找到它們也就找到了二次側(cè)。

      區(qū)分一次側(cè)和二次側(cè)更簡(jiǎn)單的方法就是跟著電源的線走。一般來(lái)講,與輸出線相連的往往是二次側(cè),而與輸入線相連的是一次側(cè)(從市電接入的輸入線)。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      區(qū)分一次側(cè)和二次側(cè)

      以上我們從宏觀的角度大致介紹了一下一臺(tái)電源內(nèi)部的各個(gè)模塊。下面我們細(xì)化一下,將話題轉(zhuǎn)移到電源各個(gè)模塊的元器件上來(lái)……

      EMC電路解析

      市電接入PC開關(guān)電源之后,首先進(jìn)入濾波電路,也就是我們常說(shuō)的EMI電路。下圖描述的是一臺(tái)PC電源的“推薦的”的濾波電路的電路圖。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      為什么要強(qiáng)調(diào)是“推薦的”的呢?因?yàn)槭忻嫔虾芏嚯娫矗绕涫堑投穗娫?,往往?huì)省去圖中的一些元器件。所以說(shuō)通過(guò)檢查EMI電路是否有縮水就可以來(lái)判斷你的電源品質(zhì)的優(yōu)劣。

      EMI電路電路的主要部件是MOV (l Oxide Varistor,金屬氧化物壓敏電阻),或者壓敏電阻(圖中RV1所示),負(fù)責(zé)抑制市電瞬變中的尖峰。MOV元件同樣被用在浪涌抑制器上(surge suppressors)。盡管如此,許多低端電源為了節(jié)省成本往往會(huì)砍掉重要的MOV元件。對(duì)于配備MOV元件電源而言,有無(wú)浪涌抑制器已經(jīng)不重要了,因?yàn)殡娫匆呀?jīng)有了抑制浪涌的功能。

      圖中的L1 and L2是共模電感;C1 and C2為Y電容,C3是金屬化聚酯電容,通常容量為100nF、470nF或680nF,也叫“X”電容;

      X電容可以任何一種和市電并聯(lián)的電容;Y電容一般都是兩兩配對(duì),需要串聯(lián)連接到火、零之間并將兩個(gè)電容的中點(diǎn)通過(guò)機(jī)箱接地。也就是說(shuō),它們是和市電并聯(lián)的。

      濾波電路不僅可以起到給市電濾波的作用,而且可以阻止開關(guān)管產(chǎn)生的噪聲干擾到同在一根市電上的其他電子設(shè)備。

      一起來(lái)看幾個(gè)實(shí)際的例子。如圖9所示,你能看到一些奇怪之處嗎?這個(gè)電源居然沒有濾波電路!這是一款低廉的“山寨”電源。請(qǐng)注意,看看電路板上的標(biāo)記,濾波電路本來(lái)應(yīng)該有才對(duì),但是。。。。。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      再看下圖實(shí)物所示,這是一款具備濾波電路的低端電源,但是正如我們看到的那樣,這款電源的濾波電路省去了重要的MOV壓敏電阻;不過(guò)這款電源配備了一個(gè)額外的X電容。

      濾波電路分為一級(jí)EMI和二級(jí)EMI,很多電源的一級(jí)EMI往往會(huì)被安置在一個(gè)獨(dú)立的PCB板上,靠近市電接口部分,二級(jí)EMI則被安置在電源的主PCB板上,如下圖11和12所示。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      一級(jí)EMI配備了一個(gè)X電容和一個(gè)共模電感

      再看這款電源的二級(jí)EMI。在這里我們能看到MOV壓敏電阻,盡管它的安置位置有點(diǎn)奇怪,位于第二個(gè)共模電感的后面??傮w而言,應(yīng)該說(shuō)這款電源的EMI電路是非常完整的。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      完整的二級(jí)EMI

      此外,這款電源的濾波電路還配備了保險(xiǎn)管。需要注意了,如果你發(fā)現(xiàn)保險(xiǎn)管內(nèi)的保險(xiǎn)絲已經(jīng)燒斷了,那么可以肯定的是,電源內(nèi)部的某個(gè)或者某些元器件是存在缺陷的。如果此時(shí)更換保險(xiǎn)管的話是沒有用的,當(dāng)你開機(jī)之后很可能再次被燒斷。

      倍壓器和一次側(cè)整流電路

      ●倍壓器和一次側(cè)整流電路

      上文已經(jīng)說(shuō)過(guò),開關(guān)電源主要包括主動(dòng)式PFC電源和被動(dòng)式PFC電源,后者沒有PFC電路,但是配備了倍壓器(voltage doubler)。倍壓器采用兩顆大的電解電容,也就是說(shuō),如果你在電源內(nèi)部看到兩顆大號(hào)電容的話,那基本可以判斷出這就是電源的倍壓器。前面我們已經(jīng)提到,倍壓器只適合于127V電壓的地區(qū)。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      兩顆大的電解電容組成的倍壓器

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      拆下來(lái)看看

      在倍壓器的一側(cè)可以看到整流橋。整流橋可以是由4顆二極管組成,也可以是有單個(gè)元器件組成,如圖所示。高端電源的整流橋一般都會(huì)安置在專門的散熱片上。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      在一次側(cè)部分通常還會(huì)配備一個(gè)NTC熱敏電阻——一種可以根據(jù)溫度的變化改變電阻值的電阻器。NTC熱敏電阻是Negative Temperature Coefficient的縮寫形式。

      主動(dòng)式PFC電路

      ●主動(dòng)式PFC電路

      毫無(wú)疑問(wèn),這種電路僅可以在配有主動(dòng)PFC電路的電源中才能看到。下圖描述的是典型的PFC電路:

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      主動(dòng)式PFC電路圖

      主動(dòng)式PFC電路通常使用兩個(gè)功率MOSFET開關(guān)管。這些開關(guān)管一般都會(huì)安置在一次側(cè)的散熱片上。為了易于理解,我們用在字母標(biāo)記了每一顆MOSFET開關(guān)管:S表示源極(Source)、D表示漏極(Drain)、G表示柵極(Gate)。

      PFC二極管是一顆功率二極管,通常采用的是和功率晶體管類似的封裝技術(shù),兩者長(zhǎng)的很像,同樣被安置在一次側(cè)的散熱片上,不過(guò)PFC二極管只有兩根針腳。

      PFC電路中的電感是電源中最大的電感;一次側(cè)的濾波電容是主動(dòng)式PFC電源一次側(cè)部分最大的電解電容。圖16中的電阻器是一顆NTC熱敏電阻,可以更加溫度的變化而改變電阻值,和二級(jí)EMI的NTC熱敏電阻起相同的作用。

      主動(dòng)式PFC控制電路通常基于一顆IC整合電路,有時(shí)候這種整合電路同時(shí)會(huì)負(fù)責(zé)控制PWM電路(用于控制開關(guān)管導(dǎo)通與截至)。

      在下圖中,我們將一次側(cè)的散熱片去除之后可以更好的看到元器件。左側(cè)是瞬變?yōu)V波電路的二級(jí)EMI電路,上文已經(jīng)詳細(xì)介紹過(guò);再看左側(cè),全部都是主動(dòng)式PFC電路的組件。由于我們已經(jīng)將散熱片去除,所以在圖片上已經(jīng)看不到PFC晶體管以及PFC二極管了。此外,稍加留意的話可以看到,在整流橋和主動(dòng)式PFC電路之間有一個(gè)X電容(整流橋散熱片底部的棕色元件)。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      主動(dòng)式PFC元器件

      一次側(cè)散熱片上的元件。這款電源配備了兩個(gè)MOSFET開關(guān)管和主動(dòng)式PFC電路的功率二極管:

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      目前最流行的兩種模式:雙管正激(two-transistor forward)和全橋式(push-pull)設(shè)計(jì),兩者均使用了兩顆開光管。

      以下是這五種模式的設(shè)計(jì)圖:

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      單端正激(Single-transistor forward configuration)

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      雙管正激(Two-transistor forward configuration)

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      半橋(Half bridge configuration)

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      全橋(Full bridge configuration)

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      推挽(Push-pull configuration)

      ●變壓器和PWM控制電路

      先前我們已經(jīng)提到,PC電源一般都會(huì)配備2~ 3個(gè)變壓器:個(gè)頭最大的那顆是主變壓器,它的一次側(cè)與開關(guān)管相連,二次側(cè)與整流電路與濾波電路相連,可以提供電源的低壓直流輸出(+12V,+5V,+3.3V,-12V,-5V)。

      最小的那顆變壓器負(fù)載+5VSB輸出,通常也成為待機(jī)變壓器,隨時(shí)處于“待命狀態(tài)”,因?yàn)檫@部分輸出始終是開啟的,即便是PC電源處于關(guān)閉狀態(tài)也是如此。

      第三個(gè)變壓器室隔離器,將PWM控制電路和開關(guān)管相連。并不是所有的電源都會(huì)裝備這個(gè)變壓器,因?yàn)橛行╇娫赐鶗?huì)配備具備相同功能的光耦整合電路。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源
      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      PWM控制電路基于一塊整合電路---TL494整合電路(下圖采用的是可兼容的DBL494整合芯片)。具備主動(dòng)式PFC電路的電源里,有時(shí)候也會(huì)采用一種用來(lái)取代PWM芯片和PFC控制電路的芯片。CM6800芯片就是一個(gè)很好的例子,它可以很好的集成PWM芯片和PFC控制電路的所有功能。

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

      ●二次側(cè)

      最后要介紹的是二次側(cè)。在二次側(cè)部分,主變壓器的輸出將會(huì)被整流和過(guò)濾,然后輸出PC所需要的電壓。-5 V和–12 V的整流是只需要有普通的二極管就能完成,因?yàn)樗麄儾恍枰吖β屎痛箅娏?。不過(guò)+3.3 V, +5 V以及+12 V等正壓的整流任務(wù)需要由大功率肖特基整流橋才行。這種肖特基有三個(gè)針腳,外形和功率二極管比較相似,但是它們的內(nèi)部集成了兩個(gè)大功率二極管。二次側(cè)整流工作能否完成是由電源電路結(jié)構(gòu)決定,一般有可能會(huì)有兩種整流電路結(jié)構(gòu),如下圖所示:

      開關(guān)電源工作原理詳細(xì)分析---PC 電源

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多