乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      基于貝葉斯估計(jì)的概率公式推導(dǎo)

       dbn9981 2019-12-14

      統(tǒng)計(jì)學(xué)習(xí)方法第四章貝葉斯估計(jì)題

      參考1:https://blog.csdn.net/bumingqiu/article/details/73397812

      參考2:https://blog.csdn.net/bitcarmanlee/article/details/82156281


       

      、第一個(gè)公式:

      p(Y=c_{k} )=\frac{\lambda+\sum_{i=1}^{N} {I(y_{i}=c_{k})}}{N+K\lambda}, (1)

      其中,c_{k}為第k種類別,共有K種;N為樣本數(shù)目;

      證:

      設(shè)p(Y=c_{i})=\pi_{i},i\in [1,K],且(\pi_{1},\pi_{2},...,\pi_{K})服從參數(shù)為\lambda的Dirichlet分布(先驗(yàn)分布),則有概率質(zhì)量函數(shù)(即離散變量的概率密度函數(shù))如下:

      \large p(\pi_{1},\pi_{2},...,\pi_{K})=\frac{1}{B(\lambda)}\prod_{i=1}^{K}\pi_{i}^{\lambda-1},(2);

      (2)式可改寫成:

      \large p(\pi_{1},\pi_{2},...,\pi_{K})\propto \prod_{i=1}^{K}\pi_{i}^{\lambda-1},(3)

      設(shè)M_{j},j\in[1,K]為各類別的觀測(cè)數(shù),有:

      M_{j}=\sum_{i=1}^{N}I(y_{i}=c_{j}),j\in[1,K],(4)

      則根據(jù)觀測(cè)數(shù)據(jù)對(duì)先驗(yàn)分布改進(jìn)如下:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})=\frac{p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi})}{p(\overrightarrow{M})},(5)

      其中,\large \overrightarrow{\pi}=(\pi_{1},\pi_{2},...,\pi_{K}),\overrightarrow{M}=(M_{1},M_{2},...,M_{K}),又\large p(\overrightarrow{M})是與\large \pi無關(guān)的量,故(5)式可寫為:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})\propto p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi}),(6)

      設(shè)\large p(\overrightarrow{M}|\overrightarrow{\pi})服從多項(xiàng)分布,則有:

      \large p(\overrightarrow{M}|\overrightarrow{\pi})=\frac{N!}{\prod_{j=1}^{K}M_{j}!}\prod_{j=1}^{K}\pi_{j}^{M_{j}},j\in[1,K],(7)

      (7)式可改寫成:

      \large p(\overrightarrow{M}|\overrightarrow{\pi})\propto \prod_{j=1}^{K}\pi_{j}^{M_{j}},j\in[1,K],(8)

      將(3)式和(8)式帶入(6)式,可得:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})\propto \prod_{j=1}^{K}\pi_{j}^{M_{j}+\lambda-1},(9)

      因此得出結(jié)論,\large \overrightarrow{\pi}的后驗(yàn)概率\large p(\overrightarrow{\pi}|\overrightarrow{M})服從參數(shù)為\large M_{j}+\lambda的Dirichlet分布:

      \large \overrightarrow{\pi}的期望有(Dirichlet分布期望公式):

      \large E(\overrightarrow{\pi})=(\frac{M_{1}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)},\frac{M_{2}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)},...,\frac{M_{K}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)}),(10)

      即有:

      \large E(\pi_{j})=\frac{M_{j}+\lambda}{\sum_{j=1}^{K}(M_{j}+\lambda)}\Leftrightarrow p(Y=c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})+\lambda}{N+K\lambda},(11)

      故原式得證。


      二、第二個(gè)公式

      p(X^{j}=a_{jl_{j}}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k})+\lambda}{\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\lambda},j\in[1,n],l_{j}\in[1,S_{j}],k\in[1,K],(1)

      其中,X_{i}^{j}表示第i個(gè)樣本的第j維特征值,S_{j}表示第j維特征可取值個(gè)數(shù),n表示特征維數(shù),K表示類別數(shù),N為樣本數(shù);

      證明:

      參考第一個(gè)公式的證明,設(shè):

      p(X^{j}=a_{jl_{j}}|Y=c_{k})=\pi_{l_{j}},l_{j}\in[1,S_{j}],且(\pi_{1},\pi_{2},...,\pi_{S_{j}})服從參數(shù)為\lambda的Dirichlet分布(先驗(yàn)分布),則有概率質(zhì)量函數(shù)(即離散變量的概率密度函數(shù))如下:

       

      \large p(\pi_{1},\pi_{2},...,\pi_{S_{j}})=\frac{1}{B(\lambda)}\prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{\lambda-1},(2)

      (2)是可改寫為:

      \large p(\pi_{1},\pi_{2},...,\pi_{S_{j}})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{\lambda-1},(3)

      設(shè)M_{jl_{j}},j\in[1,n]為第j維度l_{j}種特征值的觀測(cè)數(shù),有:

      M_{jl_j}}=\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k}),j\in[1,n],l_{j}\in[1,S_{j}],(4)

      根據(jù)觀測(cè)數(shù)據(jù)對(duì)(3)式進(jìn)行改進(jìn)如下:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})=\frac{p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi})}{p(\overrightarrow{M})},(5)

      其中,\large \overrightarrow{\pi}=(\pi_{1},\pi_{2},...,\pi_{S_{j}}),\overrightarrow{M}=(M_{j1},M_{j1},...,M_{jS_{j}}),又\large p(\overrightarrow{M})是與\large \pi無關(guān)的量,故(5)式可寫為:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})\propto p(\overrightarrow{M}|\overrightarrow{\pi})p(\overrightarrow{\pi}),(6)

      設(shè)\large p(\overrightarrow{M}|\overrightarrow{\pi})服從多項(xiàng)分布,則有:

      \large p(\overrightarrow{M}|\overrightarrow{\pi})=\frac{\Gamma (\sum_{i=1}^{N}I(y_{i}=c_{k}))}{\prod_{l_{j}=1}^{S_{j}}\Gamma (M_{jl_{j}})}\prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}},j\in[1,n],l_{j}\in[1,S_{j}],(7)

      (7)式可改寫為:

      \large p(\overrightarrow{M}|\overrightarrow{\pi})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}},j\in[1,n],l_{j}\in[1,S_{j}],(8)

      將(3)式和(8)式帶入(6)式,則有:

      \large p(\overrightarrow{\pi}|\overrightarrow{M})\propto \prod_{l_{j}=1}^{S_{j}}\pi_{l_{j}}^{M_{jl_{j}}+\lambda-1},(9)

      因此得出結(jié)論,\large \overrightarrow{\pi}的后驗(yàn)概率\large p(\overrightarrow{\pi}|\overrightarrow{M})服從參數(shù)為\large M_{jl_{j}}+\lambda的Dirichlet分布:

      \large \overrightarrow{\pi}的期望有(Dirichlet分布期望公式):

      \large E(\overrightarrow{\pi})=(\frac{M_{i1}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)},\frac{M_{j2}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)},...,\frac{M_{jS_{j}}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)}),(10)

      即有:

      \large E(\pi_{l_{j}})=\frac{M_{jS_{j}}+\lambda}{\sum_{l_{j}=1}^{S_{j}}(M_{jl_{j}}+\lambda)}\Leftrightarrow p(X^{j}=a_{jl_{j}}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{j}=a_{jl_{j}},y_{i}=c_{k})+\lambda}{\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\lambda},(11)

      于是,原式得證。

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多