近年來(lái),深度學(xué)習(xí)領(lǐng)域關(guān)于圖神經(jīng)網(wǎng)絡(luò)(Graph Neural Networks,GNN)的研究熱情日益高漲,圖網(wǎng)絡(luò)已經(jīng)成為各大深度學(xué)習(xí)頂會(huì)的研究熱點(diǎn)。GNN 處理非結(jié)構(gòu)化數(shù)據(jù)時(shí)的出色能力使其在網(wǎng)絡(luò)數(shù)據(jù)分析、推薦系統(tǒng)、物理建模、自然語(yǔ)言處理和圖上的組合優(yōu)化問(wèn)題方面都取得了新的突破。但是,大部分的圖網(wǎng)絡(luò)框架的建立都是基于研究者的先驗(yàn)或啟發(fā)性知識(shí),缺少清晰的理論支撐。
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
來(lái)自: taotao_2016 > 《哲學(xué)》