在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB. (1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為 ; (2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值; (3)連接AD,當(dāng)OC∥AD時(shí),①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請作出判斷,并說明理由. 考點(diǎn)分析: 圓的綜合題. 題干分析: (1)根據(jù)點(diǎn)A和點(diǎn)B坐標(biāo)易得△OAB為等腰直角三角形,則∠OBA=45°,由于OC∥AB,所以當(dāng)C點(diǎn)在y軸左側(cè)時(shí),有∠BOC=∠OBA=45°;當(dāng)C點(diǎn)在y軸右側(cè)時(shí),有∠BOC=180°﹣∠OBA=135°; (2)由△OAB為等腰直角三角形得AB=OA=6,根據(jù)三角形面積公式得到當(dāng)點(diǎn)C到AB的距離最大時(shí),△ABC的面積最大,過O點(diǎn)作OE⊥AB于E,OE的反向延長線交⊙O于C,此時(shí)C點(diǎn)到AB的距離的最大值為CE的長,然后利用等腰直角三角形的性質(zhì)計(jì)算出OE,然后計(jì)算△ABC的面積; (3)①過C點(diǎn)作CF⊥x軸于F,易證Rt△OCF∽Rt△AOD,則CF/OD=OC/OA,即CF/3=3/6,解得CF=3/2,再利用勾股定理計(jì)算出OF的值,則可得到C點(diǎn)坐標(biāo); ②由于OC=3,CF=3/2,所以∠COF=30°,則可得到BOC=60°,∠AOD=60°,然后根據(jù)“SAS”判斷△BOC≌△AOD,所以∠BCO=∠ADO=90°,再根據(jù)切線的判定定理可確定直線BC為⊙O的切線. |
|