乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      【中考數(shù)學(xué)課堂】第812課:三角形有關(guān)的幾何壓軸題

       中考數(shù)學(xué)寶典 2020-09-03

      典型例題分析1:

      問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)

      特例探究:如圖②,在等邊△ABC中,點(diǎn)D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點(diǎn)F.求證:△ABD≌△CAE.

      歸納證明:如圖③,在等邊△ABC中,點(diǎn)D、E分別在邊CB、BA的延長(zhǎng)線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.

      拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點(diǎn)O是AB邊的垂直平分線與AC的交點(diǎn),點(diǎn)D、E分別在OB、BA的延長(zhǎng)線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數(shù).

      考點(diǎn)分析:
      全等三角形的判定與性質(zhì);線段垂直平分線的性質(zhì);等腰三角形的性質(zhì);等邊三角形的性質(zhì).
      題干分析:
      特例探究:利用等邊三角形的三條邊都相等、三個(gè)內(nèi)角都是60°的性質(zhì)推知AB=AC,∠DBA=∠EAC=60°,然后結(jié)合已知條件BD=AE,利用全等三角形的判定定理SAS證得△ABD≌△CAE.
      歸納證明:△ABD與△CAE全等.利用等邊三角形的三條邊都相等、三個(gè)內(nèi)角都是60°的性質(zhì)以及三角形外角定理推知AB=AC,∠DBA=∠EAC=120°,然后結(jié)合已知條件BD=AE,利用全等三角形的判定定理SAS證得△ABD≌△CAE;
      拓展應(yīng)用:利用全等三角形(△ABD≌△CAE)的對(duì)應(yīng)角∠BDA=∠AEC=32°,然后由三角形的外角定理求得∠BAD的度數(shù).
      典型例題分析2:
      (1)問題背景
      如圖1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分線交直線AC于D,過點(diǎn)C作CE⊥BD,交直線BD于E.請(qǐng)?zhí)骄烤€段BD與CE的數(shù)量關(guān)系.(事實(shí)上,我們可以延長(zhǎng)CE與直線BA相交,通過三角形的全等等知識(shí)解決問題.)
      結(jié)論:線段BD與CE的數(shù)量關(guān)系是(請(qǐng)直接寫出結(jié)論);
      (2)類比探索
      在(1)中,如果把BD改為∠ABC的外角∠ABF的平分線,其他條件均不變(如圖2),(1)中的結(jié)論還成立嗎?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由;
      (3)拓展延伸
      在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他條件均不變(如圖3),請(qǐng)你直接寫出BD與CE的數(shù)量關(guān)系.
      結(jié)論:BD=CE(用含n的代數(shù)式表示).

      考點(diǎn)分析:
      相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);等腰直角三角形.
      題干分析:
      (1)延長(zhǎng)CE、BA交于F點(diǎn),先證明△BFC是等腰三角形,再根據(jù)等腰三角形的性質(zhì)可得CF=2CE,然后證明△ADB≌△AFC可得BD=FC,進(jìn)而證出BD=2CE;
      (2)延長(zhǎng)CE、AB交于點(diǎn)G,先利用ASA證明△GBE≌△CBE,得出GE=CE,則CG=2CE,再證明△DAB∽△GAC,根據(jù)相似三角形對(duì)應(yīng)邊的比相等及AB=AC即可得出BD=CG=2CE;
      (3)同(2),延長(zhǎng)CE、AB交于點(diǎn)G,先利用ASA證明△GBE≌△CBE,得出GE=CE,則CG=2CE,再證明△DAB∽△GAC,根據(jù)相似三角形對(duì)應(yīng)邊的比相等及AB=nAC即可得出BD=CG=2nCE.

        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多