乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      Python爬取股票信息,并可視化數據的示例

       老三的休閑書屋 2020-12-05

      前言

      截止2019年年底我國股票投資者數量為15975.24萬戶, 如此多的股民熱衷于炒股,首先拋開炒股技術不說, 那么多股票數據是不是非常難找, 找到之后是不是看著密密麻麻的數據是不是頭都大了?

      今天帶大家爬取雪球平臺的股票數據, 并且實現數據可視化

      先看下效果圖

      基本環(huán)境配置

      • python 3.6

      • pycharm

      • requests

      • csv

      • time

      目標地址

      https://xueqiu.com/hq

      爬蟲代碼

      請求網頁

      import requestsurl = 'https://xueqiu.com/service/v5/stock/screener/quote/list'response = requests.get(url=url, params=params, headers=headers, cookies=cookies)html_data = response.json()

      解析數據

      data_list = html_data['data']['list']for i in data_list: dit = {} dit['股票代碼'] = i['symbol'] dit['股票名字'] = i['name'] dit['當前價'] = i['current'] dit['漲跌額'] = i['chg'] dit['漲跌幅/%'] = i['percent'] dit['年初至今/%'] = i['current_year_percent'] dit['成交量'] = i['volume'] dit['成交額'] = i['amount'] dit['換手率/%'] = i['turnover_rate'] dit['市盈率TTM'] = i['pe_ttm'] dit['股息率/%'] = i['dividend_yield'] dit['市值'] = i['market_capital'] print(dit)

      保存數據

      import csvf = open('股票數據.csv', mode='a', encoding='utf-8-sig', newline='')csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名字', '當前價', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值'])csv_writer.writeheader()csv_writer.writerow(dit)f.close()

      完整代碼

      import pprintimport requestsimport timeimport csvf = open('股票數據.csv', mode='a', encoding='utf-8-sig', newline='')csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名稱', '當前價', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值'])csv_writer.writeheader()for page in range(1, 53): time.sleep(1) url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' date = round(time.time()*1000) params = {  'page': '{}'.format(page),  'size': '30',  'order': 'desc',  'order_by': 'amount',  'exchange': 'CN',  'market': 'CN',  'type': 'sha',  '_': '{}'.format(date), } cookies = {  'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448' } headers = {  'Host': 'xueqiu.com',  'Pragma': 'no-cache',  'Referer': 'https://xueqiu.com/hq',  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36' } response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json() data_list = html_data['data']['list'] for i in data_list:  dit = {}  dit['股票代碼'] = i['symbol']  dit['股票名稱'] = i['name']  dit['當前價'] = i['current']  dit['漲跌額'] = i['chg']  dit['漲跌幅/%'] = i['percent']  dit['年初至今/%'] = i['current_year_percent']  dit['成交量'] = i['volume']  dit['成交額'] = i['amount']  dit['換手率/%'] = i['turnover_rate']  dit['市盈率TTM'] = i['pe_ttm']  dit['股息率/%'] = i['dividend_yield']  dit['市值'] = i['market_capital']  csv_writer.writerow(dit)  print(dit)f.close()

      數據分析代碼

      c = ( Bar() .add_xaxis(list(df2['股票名稱'].values)) .add_yaxis('股票成交量情況', list(df2['成交量'].values)) .set_global_opts( title_opts=opts.TitleOpts(title='成交量圖表 - Volume chart'), datazoom_opts=opts.DataZoomOpts(), ) .render('data.html'))

      以上就是Python爬取股票信息,并可視化數據的示例的詳細內容,更多關于Python爬取股票信息的資料請關注腳本之家其它相關文章!

        本站是提供個人知識管理的網絡存儲空間,所有內容均由用戶發(fā)布,不代表本站觀點。請注意甄別內容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現有害或侵權內容,請點擊一鍵舉報。
        轉藏 分享 獻花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多