乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      喝咖啡和茶會(huì)影響炎癥性腸病患者的骨代謝嗎?

       錢(qián)首相小泉 2021-01-22
      喝咖啡和茶會(huì)影響炎癥性腸病患者的骨代謝嗎?

      Nutrients 2021, 13, 216.

      https:///10.3390/nu13010216

      發(fā)布:2021年1月13日

      摘要

      由于骨礦物質(zhì)密度較低,患有克羅恩氏病和潰瘍性結(jié)腸炎的患者發(fā)生骨質(zhì)疏松癥的風(fēng)險(xiǎn)較高。骨質(zhì)疏松癥的危險(xiǎn)因素分為年齡、性別、遺傳因素等不可改變的因素,包括飲食、身體活動(dòng)水平和使用興奮劑等可改變的因素??Х群筒韬性S多影響骨骼代謝的化合物。某些物質(zhì)(例如抗氧化劑)可以保護(hù)骨骼;其他物質(zhì)可能會(huì)增加骨吸收。然而,咖啡和茶對(duì)炎性腸病的發(fā)展和病程的影響是矛盾的。

      關(guān)鍵詞: 克羅恩病; 結(jié)腸炎; 潰瘍; 咖啡因; 茶花

      喝咖啡和茶會(huì)影響炎癥性腸病患者的骨代謝嗎?

      1.簡(jiǎn)介

      攝入含咖啡因的產(chǎn)品可能會(huì)影響骨骼代謝[ 1 ],而過(guò)量飲用咖啡和茶則構(gòu)成骨質(zhì)疏松的可改變危險(xiǎn)因素。因此,改變有害習(xí)慣可以降低骨質(zhì)疏松癥的風(fēng)險(xiǎn)[ 2,3,4 ]。

      在最近幾十年中,炎癥性腸病(IBD)-克羅恩?。–D)和潰瘍性結(jié)腸炎(UC)的發(fā)病率有所增加。IBD發(fā)病率最高的地區(qū)是北美,那里有20.2 / 100的居民患有CD,19.2 / 100,000的居民患有UC,而IBD的發(fā)病率在歐洲約有200萬(wàn)人,在美國(guó)約有150萬(wàn)人。必須注意的是,UC和CD通常在高度發(fā)達(dá)國(guó)家中被診斷出來(lái)。IBD的主要癥狀是胃腸道疾病,盡管該疾病可能影響其它系統(tǒng),以及[ 5,6]。在西方國(guó)家,女性罹患IBD(尤其是克羅恩?。┑谋壤哂谀行?。IBD的病因尚不完全清楚。盡管有幾個(gè)與CD或UC相關(guān)的位點(diǎn)可以確認(rèn)該疾病的遺傳基礎(chǔ),但環(huán)境因素可能還參與了該疾病的發(fā)展[ 7 ]。CD通常始于回腸的末端,但可能會(huì)影響胃腸道的任何部分,并且炎癥成分是不連續(xù)的。另一方面,UC影響結(jié)腸從遠(yuǎn)端向近端的發(fā)展,并且炎癥是連續(xù)的[ 8 ]。

      即使根據(jù)臨床數(shù)據(jù),飲用咖啡和茶與IBD之間的關(guān)聯(lián)仍不清楚。上述飲料的化合物(例如咖啡因)可能對(duì)IBD患者產(chǎn)生積極和消極的影響。另外,咖啡在食用后4分鐘內(nèi)會(huì)增加腸道的運(yùn)動(dòng)活性,兩種飲料對(duì)結(jié)腸的影響與食用1000大卡餐相似[ 1 ]。請(qǐng)記住,腸道的較高運(yùn)動(dòng)活動(dòng)可能會(huì)加劇IBD中的腹瀉,Rao等人。報(bào)告指出,含咖啡因的咖啡與大餐消耗類(lèi)似,可增加結(jié)腸的運(yùn)動(dòng)能力,分別比水和不含咖啡因的咖啡增加60%和23%[ 2 ]。

      此外,咖啡因可能抑制食欲,從而增加患有IBD的患者營(yíng)養(yǎng)不良的風(fēng)險(xiǎn)。至關(guān)重要的是,咖啡可能會(huì)降低食管下括約肌的張力,從而加劇胃食管反流病。另外,咖啡可能會(huì)對(duì)上消化道發(fā)炎的CD患者有害[ 1 ],因?yàn)樗赡軙?huì)增加失眠和增加壓力激素水平。

      骨質(zhì)疏松癥是一種慢性骨病,其骨礦物質(zhì)密度(BMD)低,可能導(dǎo)致脆性骨折,殘疾并降低生活質(zhì)量。年齡超過(guò)50歲的男女中,有1/3和1/5患有骨質(zhì)疏松性骨折 [ 9,10,11 ]。人口老齡化導(dǎo)致骨質(zhì)疏松癥的人數(shù)增加-據(jù)估計(jì),現(xiàn)在有2億人報(bào)告患有這種疾病[ 12 ]。骨質(zhì)疏松癥的患病率在世界上各地有所不同[ 13]。骨質(zhì)疏松癥的危險(xiǎn)因素包括女性性別、年齡、BMI(身體質(zhì)量指數(shù))、身體活動(dòng)低、飲食不足(鈣和維生素D攝入量不足)、過(guò)去發(fā)生骨折、肌肉質(zhì)量低、遺傳因素、直系親屬骨質(zhì)疏松癥的診斷、某些藥物(如類(lèi)固醇)的服用以及某些疾病的發(fā)生,包括IBD[1]。絕經(jīng)后婦女患骨質(zhì)疏松癥的風(fēng)險(xiǎn)較高,許多有關(guān)骨質(zhì)疏松癥的研究都涉及這一群體[3,12,14,15]。

      此外,峰值骨質(zhì)與其他遺傳因素以及營(yíng)養(yǎng)、種族、生活區(qū)域和環(huán)境因素?zé)o關(guān)。另外, IBD患者的危險(xiǎn)因素包括腸骨免疫信號(hào)和致病微生物群[ 16,17 ]。

      IBD患者發(fā)生低BMD和骨折的風(fēng)險(xiǎn)增加[ 18 ]。事實(shí)上,骨質(zhì)疏松癥或骨質(zhì)疏松癥影響約18–42%的成年人和20–50%的兒童患有IBD。根據(jù)Krela-Ka?mierczak等人的波蘭研究,股骨頸部和腰椎骨質(zhì)疏松癥發(fā)生在45.3%的女性和24.5%的男性中。

      2.咖啡因和茶—骨代謝、鈣和磷酸鹽的管理

      飲用咖啡對(duì)骨骼代謝的影響仍然存在爭(zhēng)議。咖啡中含有的因咖啡可能通過(guò)許多機(jī)制來(lái)影響B(tài)MD,因?yàn)樗黾恿四蜮}排泄,抑制成骨細(xì)胞的增殖和骨愈合過(guò)程,導(dǎo)致骨折的風(fēng)險(xiǎn)升高 [ 19,20,21 ]。

      咖啡因的細(xì)胞毒性可以通過(guò)誘導(dǎo)細(xì)胞凋亡引起[ 22 ],因?yàn)榭Х纫虼碳せ钚匝跸懔系男纬桑瑥亩T導(dǎo)細(xì)胞凋亡級(jí)聯(lián)反應(yīng)。因此,半胱氨酸蛋白酶(Caspases)和BCL-2家族的成員被激活。由于調(diào)節(jié)外線粒體膜的滲透性,Caspases和BCL-2系列的成員調(diào)節(jié)線粒體膜滲透性的變化并釋放細(xì)胞色素C。此外,咖啡因可能抑制成骨細(xì)胞的抗凋亡途徑,該途徑涉及ERK(細(xì)胞外信號(hào)調(diào)節(jié)激酶)和Akt(蛋白激酶B,PKB)[ 23 ]。

      這項(xiàng)動(dòng)物研究表明,咖啡因可減少Wistar大鼠中礦化結(jié)節(jié)和成骨細(xì)胞群落的形成。此外,成骨細(xì)胞產(chǎn)生的LDH(乳酸脫氫酶)和PGE2(前列腺素E2)的活性也降低了。實(shí)際上,這項(xiàng)研究表明咖啡因?qū)趋兰?xì)胞的代謝和活力具有負(fù)面影響[ 24]??Х戎兴目Х纫蛲ㄟ^(guò)減少成骨細(xì)胞系中的間充質(zhì)干細(xì)胞(MSC)的分化和抑制特定基因表達(dá)來(lái)影響成骨作用。MSC的分化受Cbfa1 / Runx2(與矮子相關(guān)的轉(zhuǎn)錄因子2(RUNX2),也稱為核心結(jié)合因子亞基α-1)控制,其可能受cAMP(環(huán)狀單磷酸腺苷)調(diào)控。因此,咖啡因可通過(guò)抑制cAMP磷酸二酯酶的活性來(lái)增加細(xì)胞內(nèi)cAMP的含量,從而導(dǎo)致cAMP降解的減少[ 25 ]。假定咖啡因參與了Cbfa1 / Runx2基因表達(dá)的調(diào)節(jié),并降低了成骨細(xì)胞中MSC的分化率。

      咖啡因可增加尿中鈣的排泄,并減少鈣在腸道中的吸收[ 26 ]。另一方面,它也增加了鎂、鈉和氯化物的尿排泄,該過(guò)程在食用后至少持續(xù)3小時(shí)。盡管高鈣血癥作用取決于咖啡因劑量,但腺苷激動(dòng)劑可能會(huì)抑制它[ 27 ]。反過(guò)來(lái),這可能會(huì)導(dǎo)致BMD降低,尤其是在無(wú)法通過(guò)飲食補(bǔ)償尿液中鈣損失的患者,以及因腸粘膜改變而患IBD的患者,這進(jìn)一步導(dǎo)致腸道吸收減少。

      研究人員還研究了喝咖啡對(duì)磷酸鈣平衡的影響,該平衡可能導(dǎo)致骨骼疾病,包括骨質(zhì)疏松癥[ 28 ]??Х鹊幕衔?,尤其是咖啡因,會(huì)損害鈣的吸收并刺激鈣的排泄[ 29 ]。實(shí)際上,攝入咖啡因后至少3小時(shí),咖啡因會(huì)增加鈣、鎂、鈉和氯化物的排泄[ 27 ]。攝入咖啡因?qū)е履蜮}流失可能是腎臟吸收減少的結(jié)果。此外,咖啡因的作用與游離脂肪量的劑量成正比[ 30]。正如Massey等人所報(bào)告,攝入咖啡因會(huì)降低血清肌醇水平,從而參與鈣代謝,并可能略微增加鈣的排泄并降低吸收[ 27 ]。此外,磷酸鈣不平衡可能會(huì)減少BMD。然而,每天攝入推薦劑量的鈣的人沒(méi)有咖啡因影響骨鈣代謝的風(fēng)險(xiǎn)[ 31 ]。另外,茶堿1,3-二甲基黃嘌呤也可增加動(dòng)物的鈣排泄[ 32 ]。表1列出了一些可能影響骨骼的咖啡化合物。

      3.咖啡

      3.1??Х认M(fèi)

      咖啡是世界上最受歡迎的非酒精飲料。關(guān)于咖啡對(duì)某些疾病發(fā)展風(fēng)險(xiǎn)的影響的大多數(shù)研究都是觀察性的。實(shí)際上,數(shù)據(jù)解釋可能會(huì)受到與咖啡消費(fèi)相關(guān)的其他反健康行為的影響,例如吸煙和低體力活動(dòng)[ 35 ]??Х劝磺Ф喾N化學(xué)化合物,包括碳水化合物、脂肪、氮化合物、維生素、礦物質(zhì)以及生物堿,這些物質(zhì)可能對(duì)健康有益[ 36 ]。實(shí)際上,咖啡因是咖啡中最主要和最知名的物質(zhì)之一[ 35]??Х戎锌Х纫虻暮靠赡軙?huì)有所不同,并取決于飲料的制備方法,例如,濃縮咖啡中含有30–50 mg咖啡因,速溶咖啡-約60–85 mg,而滴加的咖啡則在85–120 mg之間[ 37 ]。然而,咖啡因也存在于茶葉、可可豆(巧克力)、巴拉圭茶葉、可樂(lè)果或瓜拉納[ 38,39,40 ]。如今,能量丸和碳酸軟飲料,其中還含有咖啡因,經(jīng)常被年輕人和兒童所消費(fèi)[ 41 ]。另外,咖啡因可以添加到諸如止痛藥之類(lèi)的藥物中[ 42 ]。

      3.2??Х认M(fèi)和IBD風(fēng)險(xiǎn)

      關(guān)于咖啡對(duì)IBD發(fā)展的影響的數(shù)據(jù)是矛盾的。根據(jù)Hansen等人的觀點(diǎn),與喝少量咖啡的受試者相比,喝三杯或更多杯咖啡不會(huì)改變患病的風(fēng)險(xiǎn)[ 43 ]。在亞洲和澳大利亞人群中,盡管沒(méi)有改變CD的風(fēng)險(xiǎn),但咖啡攝入量降低了UC的風(fēng)險(xiǎn)[ 44 ]。薈萃分析表明,飲用咖啡可以保護(hù)個(gè)人免受UC和CD,但影響不顯著[ 45,46 ]。實(shí)際上,超過(guò)70%的IBD患者宣稱定期喝咖啡,而有6.5%的患者選擇不含咖啡因的品種[ 47 ]。

      此外,幾乎三分之二的避免喝咖啡的受試者在喝咖啡后報(bào)告全身不適和胃腸道癥狀?lèi)夯痆 47 ]。盡管根據(jù)Gacek等人的問(wèn)卷調(diào)查,IBD男性患者與健康個(gè)體之間的咖啡攝入量沒(méi)有差異[ 48 ],但有67%以上的IBD患者宣稱避免食用過(guò)量的咖啡和茶[ 49 ]。

      3.3。IBD患者的咖啡消耗量和骨質(zhì)疏松癥的風(fēng)險(xiǎn)

      一項(xiàng)動(dòng)物研究表明,中高劑量的咖啡因可降低卵巢切除術(shù)誘發(fā)的骨質(zhì)疏松大鼠的血清堿性磷酸酶和酸性磷酸酶水平[ 50 ]。

      Chau等人報(bào)道了咖啡的攝入量與腰椎和股骨頸的骨密度呈正相關(guān)。此外,與咖啡消費(fèi)有關(guān)的代謝產(chǎn)物與骨礦物質(zhì)密度相關(guān)[ 51 ]。每天攝入1000毫升以上的咖啡會(huì)使鈣排泄增加1.6 mmol,而每天攝入1-2杯咖啡則對(duì)鈣平衡有輕微的影響[ 52 ]。另一方面,咖啡攝入量較高和適中與T分?jǐn)?shù)較高相關(guān)。研究人員觀察到飲用量適中的人群的趨勢(shì),這可能表明T分?jǐn)?shù)隨咖啡消耗的增加而增加[ 53]。此外,女性攝入咖啡與骨折或股骨頸骨折的發(fā)生之間沒(méi)有關(guān)聯(lián),盡管與攝入少于一杯咖啡的受試者相比,每天攝入四杯以上咖啡可使BMD降低2-4% [ 54 ]。此外,絕經(jīng)后婦女的咖啡攝入量增加與BMD降低有關(guān),而在其一生中每天喝一杯牛奶的婦女中BMD的變化并未發(fā)生[ 55 ]。研究表明,適量飲用咖啡可以保護(hù)絕經(jīng)后婦女的骨質(zhì)流失[ 56],喝咖啡量適中的男性(年齡:64.85±9.41歲)患骨質(zhì)疏松癥的風(fēng)險(xiǎn)要低于不喝這種飲料的受試者[ 57 ]。Al-Othman等人報(bào)道不同攝入咖啡量的人群血清25(OH)D水平?jīng)]有差異[ 58 ]。因此,適量的咖啡攝入可能會(huì)降低IBD患者的骨質(zhì)疏松風(fēng)險(xiǎn)。

      4.茶

      4.1。茶消費(fèi)

      茶是世界范圍內(nèi)用于制備飲料的植物。綠茶特別受歡迎,因?yàn)樗卸喾N抗氧化劑。在其葉子中,我們可以找到諸如兒茶素類(lèi)物質(zhì),例如表沒(méi)食子兒茶素3-沒(méi)食子酸酯、表兒茶素、表兒茶素3-沒(méi)食子酸酯、表沒(méi)食子兒茶素、可可堿、茶堿、酚酸或咖啡因。事實(shí)上,黃酮類(lèi)化合物可能占干物質(zhì)的30%[ 59 ],由于其抗氧化特性,茶已被公認(rèn)為可以預(yù)防疾病和某些腫瘤的產(chǎn)品[ 60]]。必須要注意,綠茶主要在亞洲和北非國(guó)家消費(fèi),紅茶在美國(guó)、英國(guó)和其他西方國(guó)家最受歡迎。此外,烏龍茶主要在臺(tái)灣、中國(guó)南部和大多數(shù)東方國(guó)家消費(fèi)[ 61 ]。

      4.2。茶消費(fèi)與IBD風(fēng)險(xiǎn)

      人人普遍認(rèn)為茶葉消費(fèi)可以保護(hù)UC和CD的發(fā)展[45,46,62 ]。在他們的研究中,Du等人指出,表沒(méi)食子兒茶素3-沒(méi)食子酸酯減少了腸道炎癥中的細(xì)胞和分子炎癥以及腸道通透性[ 63 ]。此外,炎癥調(diào)節(jié)劑在喂養(yǎng)表皮膽3膽和受誘導(dǎo)炎癥的小鼠的腸道減少。然而,蛋白質(zhì)和脂肪的消化在研究組減少,這對(duì)IBD患者不利 [ 64]。綠茶中的多酚可通過(guò)調(diào)節(jié)IKK(IκB激酶復(fù)合物)、TNFγ(腫瘤壞死因子γ)、Cox-2(環(huán)氧合酶-2)、Bcl-2(B細(xì)胞淋巴瘤2)和NF- KB(核因子κB)的產(chǎn)生,可減少炎癥[ 65,66 ]。

      4.3。IBD患者的茶攝入量和骨質(zhì)疏松風(fēng)險(xiǎn)

      補(bǔ)充500 mg綠茶多酚(GTP)可以增加骨骼特異性堿性磷酸酶的含量,這是骨骼形成的標(biāo)志。另外,補(bǔ)充沒(méi)有改變血清鈣水平和鈣排泄[ 69 ]。實(shí)際上,一項(xiàng)薈萃分析表明,喝茶減少了骨質(zhì)疏松的風(fēng)險(xiǎn)[ 70 ]。根據(jù)Zhang等人的研究,喝茶的受試者的髖部和股骨頸的骨密度高于非飲酒者。但是,茶的攝入量與總骨密度沒(méi)有關(guān)系[ 60]。此外,一項(xiàng)中國(guó)研究表明,適量攝入茶對(duì)女性骨骼健康有積極影響。然而,較高的攝入量既不會(huì)降低BMD也不會(huì)增加BMD,并且在男性中,茶攝入量與BMD之間沒(méi)有關(guān)聯(lián)[ 71 ]。喝茶的人的骨密度較高,約為1.9%[ 72 ]。郭等人調(diào)查了茶葉消耗量是否增加了骨密度;然而,茶攝入與骨質(zhì)疏松性骨折之間的關(guān)系需要更多的研究[ 73 ]。

      5. IBD患者的咖啡和茶消費(fèi)量和菌群

      在各種研究的基礎(chǔ)上,腸道功能障礙是IBD發(fā)病機(jī)理中最重要的因素之一[ 74 ],并且將微生物群的修飾與藥物治療進(jìn)行了比較。根據(jù)Kruis等人的研究,就復(fù)發(fā)而言,使用大腸桿菌Nissle 1917菌株相當(dāng)于美沙拉嗪治療[ 75]。有趣的是,上述研究的研究主題集中在營(yíng)養(yǎng)物和刺激物對(duì)菌群和IBD病程的影響上。此外,在他們的研究中,Ng等人觀察了咖啡和茶對(duì)IBD發(fā)生風(fēng)險(xiǎn)的影響,其中多因素Logistic回歸表明,飲用茶與CD風(fēng)險(xiǎn)降低有關(guān)。此外,在亞洲人口中,咖啡和茶的攝入與患UC的風(fēng)險(xiǎn)較低有關(guān)[ 44]。盡管關(guān)聯(lián)的機(jī)制尚不清楚,但可能的因素之一可能是咖啡和茶對(duì)腸道菌群的影響。實(shí)際上,咖啡及其成分(咖啡因和綠原酸等)可能會(huì)影響微生物群的組成。如Nishitsuji等人觀察到,咖啡和綠原酸的使用在患有糖尿病并因此導(dǎo)致菌群失調(diào)的肥胖小鼠中恢復(fù)了短鏈脂肪酸(SCFA)的平衡[ 76 ]。值得記住的是,SCFA在代謝過(guò)程的調(diào)節(jié)中起著至關(guān)重要的作用,并影響免疫系統(tǒng)和許多細(xì)胞的增殖[ 77 ]。具體來(lái)說(shuō),丁酸對(duì)結(jié)腸細(xì)胞至關(guān)重要[ 78]。此外,在研究中,Nishitsuji等人發(fā)現(xiàn)腸道菌群中六個(gè)微生物屬的百分比發(fā)生了改變[ 76 ]。實(shí)際上,咖啡的飲用會(huì)通過(guò)增加乳鏈球菌嬰兒鏈球菌的數(shù)量來(lái)影響席爾瓦菌群[ 79 ]。但是,關(guān)于咖啡因?qū)δc道菌群的負(fù)面影響的數(shù)據(jù)有限。根據(jù)Kleber Silveira等人的研究,盡管瓜拉那中的咖啡因?qū)δc道菌群有負(fù)面影響,但據(jù)報(bào)道,瓜拉那可改善氧化還原參數(shù)[ 80 ]。

      炎癥性腸病的發(fā)病機(jī)制與上皮和粘膜下細(xì)胞的浸潤(rùn)有關(guān)。幾丁質(zhì)酶3樣蛋白1(CHI3L1)是一種宿主蛋白,可促進(jìn)細(xì)菌與上皮細(xì)胞的連接。Lee等人觀察到,咖啡因(泛幾丁質(zhì)酶的抑制劑)阻斷CHI3L1可能會(huì)降低結(jié)腸炎的風(fēng)險(xiǎn)。事實(shí)上,咖啡因治療降低了CHI3L1 mRNA表達(dá),這取決于咖啡因劑量,導(dǎo)致細(xì)菌侵入腸壁的程度有所降低??Х纫虻膭┝坑|發(fā)了對(duì)右旋糖酐硫酸鈉的反應(yīng)較弱(刺激結(jié)腸炎),降低了體重,在小鼠中獲得了更好的臨床和組織學(xué)結(jié)果。此外,細(xì)菌向其他器官的易位和促炎細(xì)胞因子也較低。根據(jù)Lee等人的研究,咖啡因通過(guò)細(xì)菌相互作用的變化和CHI3L1表達(dá)的減少來(lái)抑制急性結(jié)腸炎[81]。

      普洱茶是多酚和咖啡因的良好來(lái)源,并影響人體成分和各種細(xì)胞的能量利用效率。進(jìn)食普洱茶可以減少高脂飲食小鼠的炎癥指標(biāo)。此外,普洱茶改變腸道細(xì)菌輪廓,如下普洱茶的消耗,在觀察到增加Akkermansia muciniphilaA. muciniphila),增加脂肪氧化和葡萄糖代謝,以及在Faecalibacterium prausnitzii,減少炎癥反應(yīng)高脂飲食引起的肝臟和腸道疾病[ 82 ]。

      人參茶通過(guò)增加定植的方法修飾大鼠實(shí)驗(yàn)性結(jié)腸炎中腸微生物乳桿菌雙歧桿菌,抑制大腸桿菌的生長(zhǎng)。必須要注意,茶的兒茶素也影響慢性腸炎。小腸僅吸收少量?jī)翰杷兀艽笠徊糠謨翰杷乇环纸獠⑽誟 83]。有趣的是,兒茶素可能會(huì)調(diào)節(jié)腸道菌群的組成,這在代謝物的產(chǎn)生及其生物學(xué)活性的調(diào)節(jié)中發(fā)揮作用。一項(xiàng)體外研究表明,紅茶中的多酚可抑制病原體的生長(zhǎng),這些病原體對(duì)患有IBD且免疫系統(tǒng)受到抑制的患者有害。實(shí)際上,多酚可控制幽門(mén)螺桿菌、金黃色葡萄球菌、大腸桿菌O157:H7、鼠傷寒沙門(mén)氏菌DT104,銅綠假單胞菌的生長(zhǎng)[ 84 ]。

      嗜粘液菌是一種影響SCFA產(chǎn)生以及杯狀細(xì)胞刺激粘液產(chǎn)生的細(xì)菌,可改善腸粘膜屏障的完整性。此外,粘桿菌減少厚壁菌和梭狀芽孢桿菌的數(shù)量,促進(jìn)腸道內(nèi)穩(wěn)態(tài)[85]。必須要注意的是,茶和其他產(chǎn)品中的多酚可能會(huì)增加粘桿菌的數(shù)量,從而直接減少腸道炎癥。盡管如此,綠茶對(duì)結(jié)腸細(xì)胞影響的機(jī)制尚不清楚,盡管綠茶可能通過(guò)腸道菌群的調(diào)節(jié)來(lái)預(yù)防結(jié)腸癌,而結(jié)腸癌是IBD的常見(jiàn)結(jié)果。本研究在動(dòng)物實(shí)驗(yàn)中得到證實(shí),在兩周內(nèi)服用綠茶與逆轉(zhuǎn)病理改變有關(guān),包括厚壁菌與擬桿菌比率降低,以及產(chǎn)生SCFA的Lachinospiraceae and Ruminococcaceae數(shù)量減少,減少reduce Eubacterium and Roseburia [86,87]。此外,綠茶的攝入導(dǎo)致口腔中梭桿菌數(shù)量減少,這對(duì)患有IBD的患者是有益的[88]。此外,綠茶可以減少腹瀉,抑制體重?fù)p失,減少結(jié)腸癌過(guò)氧化物酶和TNF-α的產(chǎn)生[89]。

      6.總結(jié)

      在他們的指南中,研究性炎癥性腸病或骨質(zhì)疏松癥的研究小組參考了本文討論的興奮劑:

      1. ECCO(歐洲克羅恩氏和結(jié)腸炎組織)指出,尚無(wú)關(guān)于咖啡或咖啡因?qū)BD風(fēng)險(xiǎn)影響的明確數(shù)據(jù)。然而,由于該產(chǎn)品加劇了該疾病的癥狀,因此一些患者,特別是患有克羅恩氏病的患者報(bào)告避免喝咖啡。

      2. AACE / ACE(美國(guó)臨床內(nèi)分泌學(xué)家協(xié)會(huì)和美國(guó)內(nèi)分泌學(xué)會(huì))建議將絕經(jīng)后婦女每天飲用含咖啡因的飲料限制為每天1-2份[ 90 ]。

      炎癥性腸病的患者應(yīng)理性地飲用含咖啡因的飲料。但是,關(guān)于咖啡和茶對(duì)骨骼代謝的影響以及炎性腸病中骨質(zhì)疏松的病程和發(fā)展,還需要進(jìn)行更多的研究。

      參考文獻(xiàn):

      1. Lin, X.; Xiong, D.; Peng, Y.-Q.; Sheng, Z.-F.; Wu, X.-Y.; Wu, X.-P.; Wu, F.; Yuan, L.-Q.; Liao, E.-Y. Epidemiology and Management of Osteoporosis in the People’s Republic of China: Current Perspectives. Clin. Interv. Aging 2015, 10, 1017–1033. [Google Scholar] [CrossRef] [PubMed]

      2. Kwiatkowska, I.; Lubawy, M.; Formanowicz, D. Nutritional Procedure in Osteoporosis Prevention in Older People. Geriatria 2019, 13, 177–183. [Google Scholar]

      3. Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]

      4. Tabor, E.; Ku?niewicz, R.; Zagórski, P.; Martela, K.; Pluskiewicz, W. The Relationship of Knowledge of Osteoporosis and Bone Health in Postmenopausal Women in Silesia Osteo Active Study. J. Clin. Densitom. 2018, 21, 98–104. [Google Scholar] [CrossRef]

      5. Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef]

      6. Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2018, 390, 2769–2778. [Google Scholar] [CrossRef]

      7. Matsuoka, K.; Kobayashi, T.; Ueno, F.; Matsui, T.; Hirai, F.; Inoue, N.; Kato, J.; Kobayashi, K.; Kobayashi, K.; Koganei, K.; et al. Evidence-Based Clinical Practice Guidelines for Inflammatory Bowel Disease. J. Gastroenterol. 2018, 53, 305–353. [Google Scholar] [CrossRef]

      8. Khasawneh, M.; Spence, A.D.; Addley, J.; Allen, P.B. The Role of Smoking and Alcohol Behaviour in the Management of Inflammatory Bowel Disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 553–559. [Google Scholar] [CrossRef]

      9. M?drela-Kuder, E.; Szymura, K. Selected Anti-Health Behaviours among Women with Osteoporosis. Rocz. Panstw. Zakl. Hig. 2018, 69, 397–403. [Google Scholar] [CrossRef]

      10. Chan, C.Y.; Subramaniam, S.; Chin, K.-Y.; Ima-Nirwana, S.; Muhammad, N.; Fairus, A.; Mohd Rizal, A.M.; Ng, P.Y.; Nor Aini, J.; Aziz, N.A.; et al. Knowledge, Beliefs, Dietary, and Lifestyle Practices Related to Bone Health among Middle-Aged and Elderly Chinese in Klang Valley, Malaysia. Int. J. Environ. Res. Public Health 2019, 16, 1787. [Google Scholar] [CrossRef]

      11. Yamamoto, L.A.; DiBonaventura, M.; Kawaguchi, I. The Association between Osteoporosis and Patient Outcomes in Japan. J. Med. Econ. 2016, 19, 702–709. [Google Scholar] [CrossRef] [PubMed]

      12. Wang, Y.; Ding, H.; Wang, X.; Wei, Z.; Feng, S. Associated Factors for Osteoporosis and Fracture in Chinese Elderly. Med. Sci. Monit. 2019, 25, 5580–5588. [Google Scholar] [CrossRef] [PubMed]

      13. Thorin, M.H.; Wihlborg, A.; ?kesson, K.; Gerdhem, P. Smoking, Smoking Cessation, and Fracture Risk in Elderly Women Followed for 10 Years. Osteoporos. Int. 2016, 27, 249–255. [Google Scholar] [CrossRef] [PubMed]

      14. Landin-Wilhelmsen, K.; Wilhelmsen, L.; Bengtsson, B.-?. Postmenopausal Osteoporosis Is More Related to Hormonal Aberrations than to Lifestyle Factors. Clin. Endocrinol. 1999, 51, 387–394. [Google Scholar] [CrossRef]

      15. Bijelic, R.; Milicevic, S.; Balaban, J. Risk Factors for Osteoporosis in Postmenopausal Women. Med. Arch. 2017, 71, 25–28. [Google Scholar] [CrossRef]

      16. Sgambato, D.; Gimigliano, F.; De Musis, C.; Moretti, A.; Toro, G.; Ferrante, E.; Miranda, A.; De Mauro, D.; Romano, L.; Iolascon, G.; et al. Bone Alterations in Inflammatory Bowel Diseases. World J. Clin. Cases 2019, 7, 1908–1925. [Google Scholar] [CrossRef]

      17. Oh, H.J.; Ryu, K.H.; Park, B.J.; Yoon, B.-H. Osteoporosis and Osteoporotic Fractures in Gastrointestinal Disease. J. Bone Metab. 2018, 25, 213–217. [Google Scholar] [CrossRef]

      18. Ali, T.; Lam, D.; Bronze, M.S.; Humphrey, M.B. Osteoporosis in Inflammatory Bowel Disease. Am. J. Med. 2009, 122, 599–604. [Google Scholar] [CrossRef]

      19. Duarte, P.M.; Marques, M.R.; Bezerra, J.P.; Bastos, M.F. The Effects of Caffeine Administration on the Early Stage of Bone Healing and Bone Density A Histometric Study in Rats. Arch. Oral Biol. 2009, 54, 717–722. [Google Scholar] [CrossRef] [PubMed]

      20. Ohta, M.; Ide, K.; Cheuk, G.; Cheuk, S.L.; Yazdani, M.; Nakamoto, T.; Thomas, K.A. A Caffeine Diet Can Alter the Mechanical Properties of the Bones of Young Ovariectomized Rats. Ann. Nutr. Metab. 2002, 46, 108–113. [Google Scholar] [CrossRef] [PubMed]

      21. Hernandez-Avila, M.; Colditz, G.A.; Stampfer, M.J.; Rosner, B.; Speizer, F.E.; Willett, W.C. Caffeine, Moderate Alcohol Intake, and Risk of Fractures of the Hip and Forearm in Middle-Aged Women. Am. J. Clin. Nutr. 1991, 54, 157–163. [Google Scholar] [CrossRef]

      22. Fernández, M.J.; López, A.; Santa-Maria, A. Apoptosis Induced by Different Doses of Caffeine on Chinese Hamster Ovary Cells. J. Appl. Toxicol. 2003, 23, 221–224. [Google Scholar] [CrossRef]

      23. Lu, P.-Z.; Lai, C.-Y.; Chan, W.-H. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts. Int. J. Mol. Sci. 2008, 9, 698–718. [Google Scholar] [CrossRef]

      24. Tsuang, Y.-H.; Sun, J.-S.; Chen, L.-T.; Sun, S.C.-K.; Chen, S.-C. Direct Effects of Caffeine on Osteoblastic Cells Metabolism: The Possible Causal Effect of Caffeine on the Formation of Osteoporosis. J. Orthop. Surg. 2006, 1, 7. [Google Scholar] [CrossRef]

      25. Zhou, Y.; Guan, X.X.; Zhu, Z.L.; Guo, J.; Huang, Y.C.; Hou, W.W.; Yu, H.Y. Caffeine Inhibits the Viability and Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stromal Cells. Br. J. Pharmacol. 2010, 161, 1542–1552. [Google Scholar] [CrossRef] [PubMed]

      26. Heaney, R.P. Effects of Caffeine on Bone and the Calcium Economy. Food Chem. Toxicol. 2002, 40, 1263–1270. [Google Scholar] [CrossRef]

      27. Massey, L.K.; Whiting, S.J. Caffeine, Urinary Calcium, Calcium Metabolism and Bone. J. Nutr. 1993, 123, 1611–1614. [Google Scholar] [CrossRef]

      28. Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of Caffeine on Human Health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]

      29. Samoggia, A.; Riedel, B. Consumers’ Perceptions of Coffee Health Benefits and Motives for Coffee Consumption and Purchasing. Nutrients 2019, 11, 653. [Google Scholar] [CrossRef]

      30. Massey, L.K.; Wise, K.J. Impact of Gender and Age on Urinary Water and Mineral Excretion Responses to Acute Caffeine Doses. Nutr. Res. 1992, 12, 605–612. [Google Scholar] [CrossRef]

      31. Heaney, R.P.; Rafferty, K. Carbonated Beverages and Urinary Calcium Excretion. Am. J. Clin. Nutr. 2001, 74, 343–347. [Google Scholar] [CrossRef]

      32. Whiting, S.J.; Whitney, H.L. Effect of Dietary Caffeine and Theophylline on Urinary Calcium Excretion in the Adult Rat. J. Nutr. 1987, 117, 1224–1228. [Google Scholar] [CrossRef]

      33. Folwarczna, J.; Zych, M.; Nowińska, B.; Pytlik, M.; Janas, A. Unfavorable Effect of Trigonelline, an Alkaloid Present in Coffee and Fenugreek, on Bone Mechanical Properties in Estrogen-Deficient Rats. Mol. Nutr. Food Res. 2014, 58, 1457–1464. [Google Scholar] [CrossRef]

      34. Kiyama, R. Estrogenic Activity of Coffee Constituents. Nutrients 2019, 11, 1401. [Google Scholar] [CrossRef]

      35. Higdon, J.V.; Frei, B. Coffee and Health: A Review of Recent Human Research. Crit. Rev. Food Sci. Nutr. 2006, 46, 101–123. [Google Scholar] [CrossRef]

      36. Lire Wachamo, H. Review on Health Benefit and Risk of Coffee Consumption. Med. Aromat. Plants 2017, 6, 1–12. [Google Scholar] [CrossRef]

      37. Nieber, K. The Impact of Coffee on Health. Planta Med. 2017, 83, 1256–1263. [Google Scholar] [CrossRef]

      38. Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef]

      39. Verster, J.C.; Koenig, J. Caffeine Intake and Its Sources: A Review of National Representative Studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1250–1259. [Google Scholar] [CrossRef]

      40. Andrews, K.W.; Schweitzer, A.; Zhao, C.; Holden, J.M.; Roseland, J.M.; Brandt, M.; Dwyer, J.T.; Picciano, M.F.; Saldanha, L.G.; Fisher, K.D.; et al. The Caffeine Contents of Dietary Supplements Commonly Purchased in the US: Analysis of 53 Products with Caffeine-Containing Ingredients. Anal. Bioanal. Chem. 2007, 389, 231–239. [Google Scholar] [CrossRef]

      41. Ahluwalia, N.; Herrick, K. Caffeine Intake from Food and Beverage Sources and Trends among Children and Adolescents in the United States: Review of National Quantitative Studies from 1999 to 2011. Adv. Nutr. 2015, 6, 102–111. [Google Scholar] [CrossRef]

      42. Smith, A.P. Caffeine. In Nutritional Neuroscience; Liebermann, H.R., Kanarek, R.B., Prasad, C., Eds.; Taylor & Francis: Philadelphia, PA, USA, 2005; pp. 335–354. ISBN 0-415-31599-9. [Google Scholar]

      43. Hansen, T.S.; Jess, T.; Vind, I.; Elkjaer, M.; Nielsen, M.F.; Gamborg, M.; Munkholm, P. Environmental Factors in Inflammatory Bowel Disease: A Case-Control Study Based on a Danish Inception Cohort. J. Crohn’s Colitis 2011, 5, 577–584. [Google Scholar] [CrossRef]

      44. Ng, S.C.; Tang, W.; Leong, R.W.; Chen, M.; Ko, Y.; Studd, C.; Niewiadomski, O.; Bell, S.; Kamm, M.A.; de Silva, H.J.; et al. Environmental Risk Factors in Inflammatory Bowel Disease: A Population-Based Case-Control Study in Asia-Pacific. Gut 2015, 64, 1063–1071. [Google Scholar] [CrossRef]

      45. Nie, J.-Y.; Zhao, Q. Beverage Consumption and Risk of Ulcerative Colitis. Medicine 2017, 96, e9070. [Google Scholar] [CrossRef]

      46. Yang, Y.; Xiang, L.; He, J. Beverage Intake and Risk of Crohn Disease. Medicine 2019, 98, e15795. [Google Scholar] [CrossRef]

      47. Barthel, C.; Wiegand, S.; Scharl, S.; Scharl, M.; Frei, P.; Vavricka, S.R.; Fried, M.; Sulz, M.C.; Wiegand, N.; Rogler, G.; et al. Patients’ Perceptions on the Impact of Coffee Consumption in Inflammatory Bowel Disease: Friend or Foe?—A Patient Survey. Nutr. J. 2015, 14, 78. [Google Scholar] [CrossRef]

      48. G??bska, D.; Guzek, D.; Lech, G. Analysis of the Nutrients and Food Products Intake of Polish Males with Ulcerative Colitis in Remission. Nutrients 2019, 11, 2333. [Google Scholar] [CrossRef]

      49. Gacek, L.; B?czyk, G.; Skokowska, B.; Bielawska, A.; Brzezińska, R. The Level of Patients’ Knowladge about the Inflammatory Bowel Disease and Healthy Lifestyle. Piel?gniarstwo Polskie 2017, 63, 20–27. [Google Scholar] [CrossRef]

      50. Xu, H.; Liu, T.; Hu, L.; Li, J.; Gan, C.; Xu, J.; Chen, F.; Xiang, Z.; Wang, X.; Sheng, J. Effect of Caffeine on Ovariectomy-Induced Osteoporosis in Rats. Biomed. Pharmacother. 2019, 112, 108650. [Google Scholar] [CrossRef]

      51. Chau, Y.-P.; Au, P.C.M.; Li, G.H.Y.; Sing, C.-W.; Cheng, V.K.F.; Tan, K.C.B.; Kung, A.W.C.; Cheung, C.-L. Serum Metabolome of Coffee Consumption and Its Association with Bone Mineral Density: The Hong Kong Osteoporosis Study. J. Clin. Endocrinol. Metab. 2019, 105, e619–e627. [Google Scholar] [CrossRef]

      52. Hasling, C.; S?ndergaard, K.; Charles, P.; Mosekilde, L. Calcium Metabolism in Postmenopausal Osteoporotic Women Is Determined by Dietary Calcium and Coffee Intake. J. Nutr. 1992, 122, 1119–1126. [Google Scholar] [CrossRef]

      53. Chang, H.-C.; Hsieh, C.-F.; Lin, Y.-C.; Tantoh, D.M.; Ko, P.-C.; Kung, Y.-Y.; Wang, M.-C.; Hsu, S.-Y.; Liaw, Y.-C.; Liaw, Y.-P. Does Coffee Drinking Have Beneficial Effects on Bone Health of Taiwanese Adults? A Longitudinal Study. BMC Public Health 2018, 18, 1273. [Google Scholar] [CrossRef]

      54. Hallstr?m, H.; Byberg, L.; Glynn, A.; Lemming, E.W.; Wolk, A.; Micha?lsson, K. Long-Term Coffee Consumption in Relation to Fracture Risk and Bone Mineral Density in Women. Am. J. Epidemiol. 2013, 178, 898–909. [Google Scholar] [CrossRef]

      55. Barrett-Connor, E.; Chang, J.C.; Edelstein, S.L. Coffee-Associated Osteoporosis Offset by Daily Milk Consumption. The Rancho Bernardo Study. JAMA 1994, 271, 280–283. [Google Scholar] [CrossRef]

      56. Choi, E.; Choi, K.-H.; Park, S.M.; Shin, D.; Joh, H.-K.; Cho, E. The Benefit of Bone Health by Drinking Coffee among Korean Postmenopausal Women: A Cross-Sectional Analysis of the Fourth & Fifth Korea National Health and Nutrition Examination Surveys. PLoS ONE 2016, 11, e0147762. [Google Scholar] [CrossRef]

      57. Yu, Q.; Liu, Z.-H.; Lei, T.; Tang, Z. Subjective Evaluation of the Frequency of Coffee Intake and Relationship to Osteoporosis in Chinese Men. J. Health Popul. Nutr. 2016, 35, 24. [Google Scholar] [CrossRef]

      58. Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S.; et al. Tea and Coffee Consumption in Relation to Vitamin D and Calcium Levels in Saudi Adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef]

      59. Barbalho, S.M.; Bosso, H.; Salzedas-Pescinini, L.M.; de Alvares Goulart, R. Green Tea: A Possibility in the Therapeutic Approach of Inflammatory Bowel Diseases? Green Tea and Inflammatory Bowel Diseases. Complement. Ther. Med. 2019, 43, 148–153. [Google Scholar] [CrossRef]

      60. Zhang, Z.-F.; Yang, J.-L.; Jiang, H.-C.; Lai, Z.; Wu, F.; Liu, Z.-X. Updated Association of Tea Consumption and Bone Mineral Density: A Meta-Analysis. Medicine 2017, 96, e6437. [Google Scholar] [CrossRef]

      61. Weerawatanakorn, M.; Hung, W.-L.; Pan, M.-H.; Li, S.; Li, D.; Wan, X.; Ho, C.-T. Chemistry and Health Beneficial Effects of Oolong Tea and Theasinensins. Food Sci. Hum. Wellness 2015, 4, 133–146. [Google Scholar] [CrossRef]

      62. Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659. [Google Scholar] [CrossRef] [PubMed]

      63. Du, Y.; Ding, H.; Vanarsa, K.; Soomro, S.; Baig, S.; Hicks, J.; Mohan, C. Low Dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability. Nutrients 2019, 11, 1743. [Google Scholar] [CrossRef] [PubMed]

      64. Bitzer, Z.T.; Elias, R.J.; Vijay-Kumar, M.; Lambert, J.D. (?)-Epigallocatechin-3-Gallate Decreases Colonic Inflammation and Permeability in a Mouse Model of Colitis, but Reduces Macronutrient Digestion and Exacerbates Weight Loss. Mol. Nutr. Food Res. 2016, 60, 2267–2274. [Google Scholar] [CrossRef] [PubMed]

      65. Oz, H.S. Chronic Inflammatory Diseases and Green Tea Polyphenols. Nutrients 2017, 9, 561. [Google Scholar] [CrossRef] [PubMed]

      66. Rahman, S.U.; Li, Y.; Huang, Y.; Zhu, L.; Feng, S.; Wu, J.; Wang, X. Treatment of Inflammatory Bowel Disease via Green Tea Polyphenols: Possible Application and Protective Approaches. Inflammopharmacology 2018, 26, 319–330. [Google Scholar] [CrossRef]

      67. Liu, T.; Xiang, Z.; Chen, F.; Yin, D.; Huang, Y.; Xu, J.; Hu, L.; Xu, H.; Wang, X.; Sheng, J. Theabrownin Suppresses in Vitro Osteoclastogenesis and Prevents Bone Loss in Ovariectomized Rats. Biomed. Pharmacother. 2018, 106, 1339–1347. [Google Scholar] [CrossRef]

      68. Shen, C.-L.; Chyu, M.-C.; Wang, J.-S. Tea and Bone Health: Steps Forward in Translational Nutrition12345. Am. J. Clin. Nutr. 2013, 98, 1694S–1699S. [Google Scholar] [CrossRef]

      69. Shen, C.-L.; Chyu, M.-C.; Yeh, J.K.; Zhang, Y.; Pence, B.C.; Felton, C.K.; Brismée, J.-M.; Arjmandi, B.H.; Doctolero, S.; Wang, J.-S. Effect of Green Tea and Tai Chi on Bone Health in Postmenopausal Osteopenic Women: A 6-Month Randomized Placebo-Controlled Trial. Osteoporos. Int. 2012, 23, 1541–1552. [Google Scholar] [CrossRef]

      70. Sun, K.; Wang, L.; Ma, Q.; Cui, Q.; Lv, Q.; Zhang, W.; Li, X. Association between Tea Consumption and Osteoporosis: A Meta-Analysis. Medicine 2017, 96, e9034. [Google Scholar] [CrossRef]

      71. Li, X.; Qiao, Y.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Yan, S.; Xie, X.; Huang, D.; et al. Tea Consumption and Bone Health in Chinese Adults: A Population-Based Study. Osteoporos. Int. 2019, 30, 333–341. [Google Scholar] [CrossRef]

      72. Huang, H.; Han, G.-Y.; Jing, L.-P.; Chen, Z.-Y.; Chen, Y.-M.; Xiao, S.-M. Tea Consumption Is Associated with Increased Bone Strength in Middle-Aged and Elderly Chinese Women. J. Nutr. Health Aging 2018, 22, 216–221. [Google Scholar] [CrossRef] [PubMed]

      73. Guo, M.; Qu, H.; Xu, L.; Shi, D.-Z. Tea Consumption May Decrease the Risk of Osteoporosis: An Updated Meta-Analysis of Observational Studies. Nutr. Res. 2017, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]

      74. Prosberg, M.; Bendtsen, F.; Vind, I.; Petersen, A.M.; Gluud, L.L. The Association between the Gut Microbiota and the Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis. Scand. J. Gastroenterol. 2016, 51, 1407–1415. [Google Scholar] [CrossRef] [PubMed]

      75. Kruis, W.; Fri?, P.; Pokrotnieks, J.; Luká?, M.; Fixa, B.; Ka??ák, M.; Kamm, M.A.; Weismueller, J.; Beglinger, C.; Stolte, M.; et al. Maintaining Remission of Ulcerative Colitis with the Probiotic Escherichia Coli Nissle 1917 Is as Effective as with Standard Mesalazine. Gut 2004, 53, 1617–1623. [Google Scholar] [CrossRef] [PubMed]

      76. Nishitsuji, K.; Watanabe, S.; Xiao, J.; Nagatomo, R.; Ogawa, H.; Tsunematsu, T.; Umemoto, H.; Morimoto, Y.; Akatsu, H.; Inoue, K.; et al. Effect of Coffee or Coffee Components on Gut Microbiome and Short-Chain Fatty Acids in a Mouse Model of Metabolic Syndrome. Sci. Rep. 2018, 8, 16173. [Google Scholar] [CrossRef]

      77. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; B?ckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]

      78. De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; B?ckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]

      79. Ogata, K.; Takeshita, T.; Shibata, Y.; Matsumi, R.; Kageyama, S.; Asakawa, M.; Yamashita, Y. Effect of Coffee on the Compositional Shift of Oral Indigenous Microbiota Cultured in Vitro. J. Oral Sci. 2019, 61, 418–424. [Google Scholar] [CrossRef]

      80. Kleber Silveira, A.; Moresco, K.S.; Mautone Gomes, H.; da Silva Morrone, M.; Kich Grun, L.; Pens Gelain, D.; de Mattos Pereira, L.; Giongo, A.; Rodrigues De Oliveira, R.; Fonseca Moreira, J.C. Guarana (Paullinia Cupana Mart.) Alters Gut Microbiota and Modulates Redox Status, Partially via Caffeine in Wistar Rats. Phytother. Res. 2018, 32, 2466–2474. [Google Scholar] [CrossRef]

      81. Lee, I.-A.; Low, D.; Kamba, A.; Llado, V.; Mizoguchi, E. Oral Caffeine Administration Ameliorates Acute Colitis by Suppressing Chitinase 3-like 1 Expression in Intestinal Epithelial Cells. J. Gastroenterol. 2014, 49, 1206–1216. [Google Scholar] [CrossRef]

      82. Gao, X.; Xie, Q.; Kong, P.; Liu, L.; Sun, S.; Xiong, B.; Huang, B.; Yan, L.; Sheng, J.; Xiang, H. Polyphenol- and Caffeine-Rich Postfermented Pu-Erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect. Immun. 2017, 86, e00601-17. [Google Scholar] [CrossRef] [PubMed]

      83. Zhang, Z.; Mocanu, V.; Cai, C.; Dang, J.; Slater, L.; Deehan, E.C.; Walter, J.; Madsen, K.L. Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndrome-A Systematic Review. Nutrients 2019, 11, 2291. [Google Scholar] [CrossRef] [PubMed]

      84. Bancirova, M. Comparison of the Antioxidant Capacity and the Antimicrobial Activity of Black and Green Tea. Food Res. Int. 2010, 43, 1379–1382. [Google Scholar] [CrossRef]

      85. H?nninen, A.; Toivonen, R.; P?ysti, S.; Belzer, C.; Plovier, H.; Ouwerkerk, J.P.; Emani, R.; Cani, P.D.; De Vos, W.M. Akkermansia Muciniphila Induces Gut Microbiota Remodelling and Controls Islet Autoimmunity in NOD Mice. Gut 2018, 67, 1445–1453. [Google Scholar] [CrossRef] [PubMed]

      86. Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef] [PubMed]

      87. Peters, B.A.; Dominianni, C.; Shapiro, J.A.; Church, T.R.; Wu, J.; Miller, G.; Yuen, E.; Freiman, H.; Lustbader, I.; Salik, J.; et al. The Gut Microbiota in Conventional and Serrated Precursors of Colorectal Cancer. Microbiome 2016, 4, 69. [Google Scholar] [CrossRef]

      88. Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The Oral Microbiota in Colorectal Cancer Is Distinctive and Predictive. Gut 2018, 67, 1454–1463. [Google Scholar] [CrossRef]

      89. Mazzon, E.; Muià, C.; Paola, R.D.; Genovese, T.; Menegazzi, M.; De Sarro, A.; Suzuki, H.; Cuzzocrea, S. Green Tea Polyphenol Extract Attenuates Colon Injury Induced by Experimental Colitis. Free Radic. Res. 2005, 39, 1017–1025. [Google Scholar] [CrossRef]

      90. Camacho, P.M.; Petak, S.M.; Binkley, N.; Clarke, B.L.; Harris, S.T.; Hurley, D.L.; Kleerekoper, M.; Lewiecki, E.M.; Miller, P.D.; Narula, H.S.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2016—Executive Summary. Endocr. Pract. 2016, 22, 1111–1118. [Google Scholar] [CrossRef]

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類(lèi)似文章 更多