【原】壓軸題打卡54:正方形有關(guān)的幾何變換綜合問(wèn)題分析
在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.(Ⅰ)如圖①,當(dāng)α=90°時(shí),求AE′,BF′的長(zhǎng);(Ⅱ)如圖②,當(dāng)α=135°時(shí),求證AE′=BF′,且AE′⊥BF′;(Ⅲ)若直線AE′與直線BF′相交于點(diǎn)P,求點(diǎn)P的縱坐標(biāo)的最大值(直接寫(xiě)出結(jié)果即可).幾何變換綜合題;三角形的外角性質(zhì);全等三角形的判定與性質(zhì);含30度角的直角三角形;勾股定理.(1)利用勾股定理即可求出AE′,BF′的長(zhǎng).(2)運(yùn)用全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)就可解決問(wèn)題.(3)首先找到使點(diǎn)P的縱坐標(biāo)最大時(shí)點(diǎn)P的位置(點(diǎn)P與點(diǎn)D′重合時(shí)),然后運(yùn)用勾股定理及30°角所對(duì)的直角邊等于斜邊的一半等知識(shí)即可求出點(diǎn)P的縱坐標(biāo)的最大值.
|
轉(zhuǎn)藏
分享
獻(xiàn)花(0)
+1