乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST數據集實現多分類預測(92%)

       處女座的程序猿 2021-09-28

      TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST數據集實現多分類預測(92%)


      輸出結果

      Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
      Extracting data/fashion\train-images-idx3-ubyte.gz
      Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
      Extracting data/fashion\train-labels-idx1-ubyte.gz
      Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
      Extracting data/fashion\t10k-images-idx3-ubyte.gz
      Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
      Extracting data/fashion\t10k-labels-idx1-ubyte.gz
      
      (55000, 784)
      (55000, 10)
      Epoch: 0,acc: 0.7965
      Epoch: 1,acc: 0.8118
      Epoch: 2,acc: 0.8743
      Epoch: 3,acc: 0.8997
      Epoch: 4,acc: 0.9058
      Epoch: 5,acc: 0.9083
      Epoch: 6,acc: 0.9102
      Epoch: 7,acc: 0.9117
      Epoch: 8,acc: 0.9137
      Epoch: 9,acc: 0.9147
      Epoch: 10,acc: 0.9158
      Epoch: 11,acc: 0.9166
      Epoch: 12,acc: 0.9186
      Epoch: 13,acc: 0.9191
      Epoch: 14,acc: 0.9187
      Epoch: 15,acc: 0.9195
      Epoch: 16,acc: 0.9206
      Epoch: 17,acc: 0.9207
      Epoch: 18,acc: 0.9216
      Epoch: 19,acc: 0.9215
      Epoch: 20,acc: 0.9218
      

      實現代碼

      
      
      #TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST數據集實現多分類預測(92%)
      import  tensorflow as tf
      from tensorflow.examples.tutorials.mnist import input_data
      
      fashion = input_data.read_data_sets('data/fashion', one_hot=True)
      
      print(fashion.train.images.shape)
      print(fashion.train.labels.shape)
      
      batch_size = 100
      batch_num = fashion.train.num_examples // batch_size
      
      #定義X,Y參數
      x = tf.placeholder(tf.float32, shape=[None, 784])
      y = tf.placeholder(tf.float32, shape=[None, 10])
      #定義W,B參數
      W = tf.Variable(tf.truncated_normal([784, 10], stddev= 0.1))
      b = tf.Variable(tf.zeros([10]) + 0.1)
      
      #預測結果
      prediction = tf.nn.softmax(tf.matmul(x, W) + b)
      #使用交叉熵計算loss
      cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y))
      #定義優(yōu)化器
      train_step = tf.train.GradientDescentOptimizer(0.2).minimize(cross_entropy)
      #判斷預測結果是否正確
      correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
      #計算準確率,將bool值轉為float32
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      
      with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
          for epoch in range(21):
              for i in range(batch_num):
                  batch_xs, batch_ys = fashion.train.next_batch(batch_size)
                  sess.run(train_step, feed_dict={x: batch_xs, y:batch_ys})
              acc = sess.run(accuracy, feed_dict={x:fashion.test.images, y:fashion.test.labels})
              print('Epoch: '+str(epoch)+',acc: '+str(acc))
      
      
      
      
      
      

        轉藏 分享 獻花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多