乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      空間計(jì)量的多面檢驗(yàn): 以 cigar 為例

       計(jì)量經(jīng)濟(jì)圈 2023-05-05 發(fā)布于浙江

      誰把極地鋪進(jìn)太虛, 把大地掛在太空, 又時(shí)時(shí)護(hù)理與查驗(yàn)?

      Elhorst J P (2012) Matlab software for spatial panels. International Regional Science Review. doi:10.1177/0160017612452429 一文, 以 cigar 數(shù)據(jù)集演示估計(jì)空間面板模型的程序, 包括模型選擇與檢驗(yàn)以及偏誤修正方法, 以提供一個(gè)選擇性框架來決定哪種模型能更好地描述數(shù)據(jù).

      4種空間交互效應(yīng)和4類檢驗(yàn)

      近年來空間計(jì)量經(jīng)濟(jì)學(xué)文獻(xiàn)越來越熱衷于基于空間面板的模型設(shè)置以及計(jì)量經(jīng)濟(jì)學(xué)關(guān)系的估計(jì). 這種興趣可以解釋如下, 和截面數(shù)據(jù)單一方程相比, 面板數(shù)據(jù)為研究者提供了擴(kuò)展模型的可能性, 雖然截面數(shù)據(jù)一直以來是空間計(jì)量經(jīng)濟(jì)學(xué)文獻(xiàn)最初的關(guān)注點(diǎn).

      當(dāng)今的一個(gè) (空間) 計(jì)量經(jīng)濟(jì)學(xué)研究者對(duì)模型有更多的選擇.

      • 首先, 他應(yīng)該問自己, 應(yīng)該考慮下列哪種空間交互效應(yīng):

        (1) 空間滯后的因變量;

        (2) 空間滯后的自變量;

        (3) 空間自相關(guān)的誤差項(xiàng);

        (4) 以上情況的組合.

      • 其次, 他應(yīng)該問自己, 是否考慮空間特定效應(yīng)和/或時(shí)間特定效應(yīng), 是固定效應(yīng)還是隨機(jī)效應(yīng). 已經(jīng)開發(fā)并可以獲得不同統(tǒng)計(jì)檢驗(yàn)的兩個(gè)程序可以幫助研究者在不同的選擇中進(jìn)行挑選.

        (A) 第一個(gè)程序提供 (穩(wěn)健) LM 檢驗(yàn), 是古典 LM 檢驗(yàn) (Burridge, 1980; Anselin, 1988) 和穩(wěn)健 LM 檢驗(yàn) (Anselin et al., 1996) 從截面數(shù)據(jù)到空間面板數(shù)據(jù)的一般化. 這個(gè)一般化是基于 Elhorst (2010a) .

        (B) 第二個(gè)程序包含一個(gè)框架來檢驗(yàn)空間滯后模型 SLM 、空間誤差模型 SEM 和空間杜賓模型 (spatial Durbin model, SDM), 以及選擇固定效應(yīng)模型、隨機(jī)效應(yīng)模型, 或者固定/隨機(jī)效應(yīng)均不存在的模型.

      3個(gè)模型

      空間滯后模型 SLM

      • 是因變量, 表示截面單元 在時(shí)間 上的數(shù)據(jù).
      • 變量 表示相鄰區(qū)域上因變量 和 的交互效應(yīng),
      • 是 和 個(gè)元素預(yù)先設(shè)置的非負(fù) 維的空間權(quán)重矩陣 , 用來描述樣本空間單元的分布.
      • 是內(nèi)生交互效應(yīng)的響應(yīng)參數(shù), 假定 是權(quán)重矩陣行標(biāo)準(zhǔn)化以后的特征根.
      • 是常數(shù)項(xiàng)的參數(shù). 是外生變量的 維向量,
      • 是末知參數(shù)的 維向量.
      • 是獨(dú)立同分布的誤差項(xiàng), 服從 分布,
      • 表示空間固定效應(yīng),
      • 表示時(shí)間固定效應(yīng).

      空間誤差模型 SEM

      被稱為自相關(guān)系數(shù). 單元的誤差項(xiàng) 取決于空間權(quán)重矩陣 相鄰單元 的誤差項(xiàng), 以及 ,

      LM 檢驗(yàn)

      為檢驗(yàn)空間滯后模型 SLM 和空間誤差模型 SEM 哪個(gè)比不存在空間交互效應(yīng)模型更適合描述數(shù)據(jù), 需用 LM (Lagrange Multiplier) 統(tǒng)計(jì)量檢驗(yàn)空間滯后因變量和空間誤差自相關(guān), 同時(shí)運(yùn)用穩(wěn)健 LM 統(tǒng)計(jì)量檢驗(yàn)存在局部空間誤差自相關(guān)情況下的空間滯后因變量, 以及存在局部空間滯后因變量時(shí)的空間誤差自相關(guān).

      由于穩(wěn)健 LM 檢驗(yàn)的結(jié)果依賴于包含的效應(yīng), 因此建議給出不同面板設(shè)置模型的 LM 統(tǒng)計(jì)量. Matlab 程序 (LMsarsem_panel.m), 和一個(gè)演示文件 (demoLMsarsem_panel.m), 計(jì)算 LM 統(tǒng)計(jì)量.

      空間杜賓模型 SDM

      如果基于 LM 檢驗(yàn)拒絕非空間模型而接受空間滯后模型 SLM 或者空間誤差模型 SEM, 那么要謹(jǐn)慎選擇兩個(gè)模型中的一個(gè). LeSage & Pace (2009, Ch.6) 建議同時(shí)考慮空間杜賓模型 SDM (If the nonspatial model on the basis of these LM tests is rejected in favor of the spatial lag model or the spatial error model, one should be careful to endorse one of these two models. LeSage and Pace (2009, chap. 6) recommend to also consider the spatial Durbin model). 該模型用空間滯后的自變量拓展了空間滯后模型 SLM, 形式如下:

      LR 及 Wald 檢驗(yàn)

      和 都是 維參數(shù)向量. 該模型可以用來檢驗(yàn)假設(shè) 和 .

      第一個(gè)假設(shè)檢驗(yàn)是否空間杜賓模型 SDM 會(huì)被簡(jiǎn)化 (simplified) 空間滯后模型 SLM,

      第二個(gè)假設(shè)檢驗(yàn)是否空間杜賓模型 SDM 會(huì)簡(jiǎn)化 (simplified) 為空間誤差模型 SEM (burridge, 1981). 兩個(gè)檢驗(yàn)均服從自由度為 的卡方分布.

      如果同時(shí)估計(jì)空間滯后模型 SLM 和空間誤差模型 SEM, 那么這些檢驗(yàn)可以采取似然比檢驗(yàn) (likelihood ratio, LR) 的形式.

      如果不估計(jì)這些模型, 僅采取 Wald 檢驗(yàn).

      如果兩個(gè)假設(shè) 都被拒絕了, 那么空間杜賓模型 SDM 更好地描述數(shù)據(jù).

      相反, 若第一個(gè)假設(shè)不能被拒絕, 則選擇空間滯后模型 SLM, 并且穩(wěn)健的 LM 檢驗(yàn)也說明要選擇空間滯后模型 SLM.

      類似地, 如果第二個(gè)假設(shè)不能被拒絕, 則選擇空間誤差模型 SEM, 并且穩(wěn)健的 LM 檢驗(yàn)也說明要選擇空間誤差模型 SEM .

      若這些條件不滿足, 也就是說, 穩(wěn)健的 LM 檢驗(yàn)指向其他的模型, 那么應(yīng)該采用空間杜賓模型 SDM. 這是因?yàn)檫@個(gè)模型是空間滯后和空間誤差模型 SEM 的一般化形式.

      空間計(jì)量經(jīng)濟(jì)學(xué)文獻(xiàn)被劃分為, 是否應(yīng)用特殊到一般的方法, 或者一般到特殊的方法 (Florax et al.,2003; Mur & Angula,2009). 檢驗(yàn)的程序概括了以上兩種方法的混合.

      首先, 非空間模型用來檢驗(yàn)與空間滯后模型 SLM 以及空間誤差模型 SEM 的不同 (特殊到一般的方法--Stge: Specific-to-General, Mur&Angulo2009) .

      Image


      如果非空間模型被拒絕了, 那么空間杜賓模型 SDM 用來檢驗(yàn)是否會(huì)簡(jiǎn)化為空間滯后或者空間誤差模型 SEM (一般到特殊的方法--Gets: General-to-Specific, Mur&Angulo2009).

      Image


      如果兩種檢驗(yàn)確定了選擇空間滯后模型 SLM 或者空間誤差模型 SEM, 那么可以認(rèn)為該模型就是最好的.

      相反, 如果非空間模型被拒絕了, 而接受空間滯后或者空間誤差模型 SEM 而不是空間杜賓模型 SDM, 那么最好采用更一般的模型.

      Image

                          (Yang et al. 2023)

      cigar 的例子

      Baltagi & Li (2004) 基于美國 46 個(gè)州的面板數(shù)據(jù)估計(jì)了一個(gè)香煙需求模型

      • 表示 14 歲以上吸煙者的人均香煙需求數(shù)量, 單位: 包.
      • 指每包香煙實(shí)際零售均價(jià).
      • 指人均實(shí)際可支配收入.

      方程 (13) 中包含每一年的地區(qū)虛擬變量和時(shí)間虛擬變量. 本文將研究是否這些固定效應(yīng)是聯(lián)合顯著的, 以及是否用隨機(jī)效應(yīng)代替.

      表 1 給出了非空間面板模型的回歸結(jié)果, 并檢驗(yàn)是否空間滯后模型 SLM 或空間誤差模型 SEM 更合適. 通過運(yùn)行演示文件 “demoLMsarsem_panel.m” 可以得到該結(jié)果并復(fù)制.

      使用古典 LM 檢驗(yàn)時(shí), 在不考慮空間或者時(shí)間固定效應(yīng), 不存在空間滯后因變量的假設(shè)和不存在空間自相關(guān)誤差項(xiàng)的假設(shè)在 和 顯著水平上均被拒絕.

      使用穩(wěn)健檢驗(yàn)時(shí), 不存在空間自相關(guān)誤差項(xiàng)的假設(shè)在 5%和 顯著水平上均被拒絕, 但考慮空間或者時(shí)間固定效應(yīng)情況下, 不存在空間滯后因變量的假設(shè)在 和 顯著水平上不能被拒絕. 顯然, 選擇空間還是時(shí)間固定效應(yīng)是一個(gè)重要的問題.

      表1  用沒有空間交互效應(yīng)的面板數(shù)據(jù)模型對(duì)香煙的需求進(jìn)行估計(jì)的結(jié)果


      (1)
      Pooled OLS
      (2)
      Spatial fixed
      effects
      (3)
      Time-period
      fixed effects
      (4)
      Spatial and
      time-period
      fixed effects
      log()-0.859
      (-25.16)
      -0.702
      (-38.88)
      -1.205
      (-22.66)
      -1.035
      (-25.63)
      log()0.268
      (10.85)
      -0.011
      (-0.66)
      0.565
      (18.66)
      0.529
      (11.67)
      Intercept3.485
      (30.75)




      0.0340.0070.0280.005

      0.3210.8530.4400.896
      Log L370.31425.2503.91661.7
      LM spatial lag66.47136.4344.0446.90
      LM spatial error153.04255.7262.8654.65
      Robust LM spatial lag58.2629.510.331.16
      Robust LM spatial error144.84148.8019.158.91

      為檢驗(yàn) (虛無) 假設(shè): 空間固定效應(yīng)是聯(lián)合不顯著, 需要進(jìn)行似然比檢驗(yàn). 結(jié)果 (2315.7, 自由度為 46, ) 表明拒絕零假設(shè). 同樣地, 也應(yīng)該拒絕時(shí)間固定效應(yīng)不是聯(lián)合顯著的零假設(shè) (473.1, 自由度為 30, . 這些檢驗(yàn)證明, 要選擇空間和時(shí)間固定效應(yīng)模型, 這就是雙向固定效應(yīng)模型 (TWFE, Baltagi, 2005).

      到目前為止, 檢驗(yàn)結(jié)果指向雙向固定效應(yīng)模型中的空間誤差模型 SEM. 從我們第二部分給出的檢驗(yàn)程序來看, 應(yīng)該考慮空間杜賓形式的香煙需求模型. 模型結(jié)果見表 2 第 (1) (2) 列, 通過程序 “demopanelscompare.m” 獲得.

      表2  用具有空間和時(shí)間特定效應(yīng)的空間杜賓模型 SDM 對(duì)香煙的需求進(jìn)行估計(jì)的結(jié)果

      Determinants(1)
      Spatial and time-period
      fixed effects

      (2)
      Spatial and time-period
      fixed effects bias-corrected

      (3)
      Random spatial effects,
      fixed time-period effects


      0.219(6.67)
      0.264(8.25)
      0.224(6.82)

      -1.003
      (-25.02)

      -1.001
      (-24.36)

      -1.007
      (-24.91)


      0.601
      (10.51)

      0.603
      (10.27)

      0.593
      (10.71)


      0.045
      (0.55)

      0.093
      (1.13)

      0.066
      (0.81)


      -0.292
      (-3.73)

      -0.314
      (-3.93)

      -0.271
      (-3.55)

      phi



      0.087
      (6.81)


      0.005
      0.005
      0.005
      (Pseudo) 0.901
      0.902
      0.880
      (Pseudo) Corrected 0.400
      0.400
      0.317
      log L1691.4
      1691.4
      1555.5
      Wald test spatial lag14.83(=.001)
      17.96(=.000)
      13.90(=.001)
      LR test satial lag15.75(=.000)
      17.96(=.000)
      14.48(=.000)
      Wald test satial error8.98(=.011)
      8.18(=.017)
      7.38(=.025)
      LR test satial error8.23(=.016)
      8.28(=.016)
      7.27(=.026)
      Direct effect -1.015(-24.34)-1.014(-25.44)-1.013(-24.73)-1.012(-23.93)-1.018(-24.64)-1.018(-25.03)
      Indirect effect -0.210(-2.40)-0.211(-2.37)-0.220(-2.26)-0.215(-2.12)-0.199(-2.28)-0.195(-2.19)
      Total effect -1.225(-12.56)-1.225(-12.37)-1.232(-11.31)-1.228(-11.26)-1.217(-12.43)-1.213(-12.21)
      Direct effect 0.591 (10.62)0.594(10.44)0.594(10.45)0.594(10.67)0.586(10.68)0.583(10.53)
      Indirect effect -0.194(-2.29)-0.194(-2.27)-0.197(-2.15)-0.196(-2.18)-0.169(-2.03)-0.171(-2.06)
      Total effect 0.397(5.05)0.400(5.19)0.397(4.61)0.398(4.62)0.417(5.45)0.412(5.37)

      注: 括符中為  值. 直接和間接效應(yīng)估計(jì): 左欄  每次抽樣時(shí)計(jì)算, 右欄  通過式  計(jì)算.  Corrected R 為不含固定效應(yīng)的 R.

      • 空間滯后因變量 () 和自變量 () 的系數(shù)對(duì)偏誤修正程序十分敏感. 這就是為什么要在 Matlab 程序中建立偏誤修正程序來處理固定效應(yīng)空間滯后和固定效應(yīng)空間誤差模型 SEM 的主要原因 (程序 “sar_panel_FE.m' “sem_panel_FE.m').

      • 利用 Wald 或 LR 檢驗(yàn)來檢驗(yàn)是否空間杜賓模型 SDM 會(huì)簡(jiǎn)化成空間誤差模型 SEM, 即 . 表 2 中第 (2) 列結(jié)果說明應(yīng)該拒絕原假設(shè).

      • 利用 Wald 或 LR 檢驗(yàn)來檢驗(yàn)是否空間杜賓模型 SDM 會(huì)簡(jiǎn)化成空間滯后模型 SLM, 即 . 結(jié)果顯示該假設(shè)被拒絕了. 因此應(yīng)選擇空間杜賓模型 SDM.

      • Hausman 檢驗(yàn)假設(shè): 選擇隨機(jī)效應(yīng)而不是固定效應(yīng). 結(jié)果說明拒絕隨機(jī)效應(yīng)模型.

      • 另一種檢驗(yàn)方式是估計(jì)參數(shù) “phi” (Baltagi, 2005 中是 ), 該參數(shù)度量附著數(shù)據(jù)截面成分的權(quán)重, 取值范圍 . 如果參數(shù)為 0 , 說明隨機(jī)效應(yīng)模型向固定效應(yīng)靠攏; 如果參數(shù)為 1 , 說明它向不受任何限制的空間特定效應(yīng)靠攏. 結(jié)果和 Hausman 檢驗(yàn)相同, 固定效應(yīng)和隨機(jī)效應(yīng)模型顯著不同.

      • 進(jìn)一步, 檢驗(yàn) (SDM等) 直接效應(yīng)和間接效應(yīng)的符號(hào)和顯著性, 因顯著性水平重要且靈活, 故應(yīng)審慎選擇模型.

      Stata

      (讀入數(shù)據(jù)參閱 前篇推文)

      clear all
      use Wct_bin.dta
      spmat dta Wst m1-m46, norm(row) replace

      * Panel data set up
      use cigar
      xtset state year

      *參 Carlos Mendez
      **Non-spatial panel

      *Pooled OLS
      reg logc logp logy
      estimate store pool

      *Region FE
      xtreg logc logp logy, fe
      estimate store rfe

      *Time FE
      reg logc logp logy i.year
      estimate store tfe

      *Two-way FE
      xtreg logc logp logy i.year, fe
      estimate store rtfe

      *Hausman test...

      *Comparison
      estimates table pool rfe tfe rtfe, b(%7.2f) star(0.1 0.05 0.01) stf(%9.0f)

      使用 xsmle 但少 LM 檢驗(yàn)

      **Spatial panel

      *SDM with two-way FE
      xsmle logc logp logy, fe type(both) wmat(Wst) mod(sdm) effects nsim(999) nolog
      estimate store sdm1

      *Lee and Yu correction
      xsmle logc logp logy, fe type(both) leeyu wmat(Wst) mod(sdm) effects nsim(999) nolog
      estimate store sdm2

      *Comparison
      estimates table sdm1 sdm2, b(%7.3f) star(0.1 0.05 0.01) stf(%9.0f)

      *Wald tests
      quietly xsmle logc logp logy, fe type(both) leeyu wmat(Wst) mod(sdm) effects nsim(999) nolog

      * Wald test: Reduce to SAR? (NO if p < 0.05)
      test ([Wx]logp = 0) ([Wx]logy = 0)

      * Wald test: Reduce to SLX? (NO if p < 0.05)
      test ([Spatial]rho = 0)

      * Wald test: Reduce to SEM? (NO if p < 0.05)
      testnl ([Wx]logp = -[Spatial]rho*[Main]logp) ([Wx]logy = -[Spatial]rho*[Main]logy)

      *lrtest
      lrtest sdm1 sdm2

      使用 spregxt 提供多面檢驗(yàn)

      spregxt logc logp logy, nc(46) wmfile(Wct_bin) model(sar) mfx(log) pmfx tests predict(Yh) resid(Ue)


      ==============================================================================
      *** Binary (0/1) Weight Matrix: (1380x1380) : NC=46 NT=30 (Non Normalized)
      ------------------------------------------------------------------------------
      ==============================================================================
      * MLE Spatial Panel Lag Normal Model (SAR)
      ==============================================================================
      logc = logp logy
      ------------------------------------------------------------------------------
      Sample Size = 1380 | Cross Sections Number = 46
      Wald Test = 402.6298 | P-Value > Chi2(2) = 0.0000
      F-Test = 201.3149 | P-Value > F(2 , 1332) = 0.0000
      R2 (R-Squared) = 0.2262 | Raw Moments R2 = 0.9985
      R2a (Adjusted R2) = 0.1989 | Raw Moments R2 Adj = 0.9985
      Root MSE (Sigma) = 0.2007 | Log Likelihood Function = 348.1546
      ------------------------------------------------------------------------------
      - R2h= 0.2878 R2h Adj= 0.2627 F-Test = 278.23 P-Value > F(2 , 1332)0.0000
      - R2r= 0.9985 R2r Adj= 0.9985 F-Test = 3.1e+05 P-Value > F(3 , 1332)0.0000
      ------------------------------------------------------------------------------
      logc | Coefficient Std. err. z P>|z| [95% conf. interval]
      -------------+----------------------------------------------------------------
      logc |
      logp | -.8302382 .0349615 -23.75 0.000 -.8987615 -.7617148
      logy | .0440118 .0253011 1.74 0.082 -.0055775 .0936011
      _cons | 4.871404 .1186427 41.06 0.000 4.638869 5.103939
      -------------+----------------------------------------------------------------
      /Rho | -.002663 .0006449 -4.13 0.000 -.003927 -.001399
      /Sigma | .188014 .0035788 52.54 0.000 .1809997 .1950283
      ------------------------------------------------------------------------------
      LR Test SAR vs. OLS (Rho=0): 17.0515 P-Value > Chi2(1) 0.0000
      Acceptable Range for Rho: -0.3690 < Rho < 0.1970
      ------------------------------------------------------------------------------

      ==============================================================================
      * Panel Model Selection Diagnostic Criteria - Model= (sar)
      ==============================================================================
      - Log Likelihood Function LLF = 348.1546
      ---------------------------------------------------------------------------
      - Akaike Information Criterion (1974) AIC = 0.0391
      - Akaike Information Criterion (1973) Log AIC = -3.2426
      ---------------------------------------------------------------------------
      - Schwarz Criterion (1978) SC = 0.0395
      - Schwarz Criterion (1978) Log SC = -3.2313
      ---------------------------------------------------------------------------
      - Amemiya Prediction Criterion (1969) FPE = 0.0404
      - Hannan-Quinn Criterion (1979) HQ = 0.0392
      - Rice Criterion (1984) Rice = 0.0391
      - Shibata Criterion (1981) Shibata = 0.0391
      - Craven-Wahba Generalized Cross Validation (1979) GCV = 0.0391
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Spatial Panel Aautocorrelation Tests - Model= (sar)
      *** Binary (0/1) Weight Matrix (W): (Non Normalized)
      ==============================================================================
      Ho: Error has No Spatial AutoCorrelation
      Ha: Error has Spatial AutoCorrelation

      - GLOBAL Moran MI = 0.2234 P-Value > Z(11.941) 0.0000
      - GLOBAL Geary GC = 0.6853 P-Value > Z(-10.410) 0.0000
      - GLOBAL Getis-Ords GO = -0.9132 P-Value > Z(-11.941) 0.0000
      ------------------------------------------------------------------------------
      - Moran MI Error Test = 2.9432 P-Value > Z(156.817) 0.0032
      ------------------------------------------------------------------------------
      - LM Error (Burridge) = 140.1836 P-Value > Chi2(1) 0.0000
      - LM Error (Robust) = 150.8628 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      Ho: Spatial Lagged Dependent Variable has No Spatial AutoCorrelation
      Ha: Spatial Lagged Dependent Variable has Spatial AutoCorrelation

      - LM Lag (Anselin) = 23.8390 P-Value > Chi2(1) 0.0000
      - LM Lag (Robust) = 34.5182 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      Ho: No General Spatial AutoCorrelation
      Ha: General Spatial AutoCorrelation

      - LM SAC (LMErr+LMLag_R) = 174.7018 P-Value > Chi2(2) 0.0000
      - LM SAC (LMLag+LMErr_R) = 174.7018 P-Value > Chi2(2) 0.0000
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Panel Unit Roots Tests - Model= (sar)
      ==============================================================================
      Ho: All Panels are Stationary - Ha: Some Panels Have Unit Roots

      - Hadri Z Test (No Trend - No Robust) = 87.2984 P-Value > Z(0,1) 0.0000
      - Hadri Z Test (No Trend - Robust) = 72.1427 P-Value > Z(0,1) 0.0000
      - Hadri Z Test ( Trend - No Robust) = 74.7931 P-Value > Z(0,1) 0.0000
      - Hadri Z Test ( Trend - Robust) = 64.7472 P-Value > Z(0,1) 0.0000
      ------------------------------------------------------------------------------
      ==============================================================================
      * (1) (DF): Dickey-Fuller Test
      * (2) (ADF): Augmented Dickey-Fuller Test
      * (3) (APP): Augmented Phillips-Perron Test
      --------------------------------------------------
      Ho: All Panels Have Unit Roots (Non stationary)
      Ha: At Least One Panel is Stationary
      ------------------------------------------------------------------------------
      Ho: Non Stationary [0.05, 0.01 < P-Value]
      Ha: Stationary [0.05, 0.01 > P-Value]
      ------------------------------------------------------------------------------
      *** (1) Dickey-Fuller (DF) Test:
      --------------------------------------------------
      - DF Test: [Lag = 0] (No Trend) = 10.2853 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - DF Test: [Lag = 0] ( Trend) = 8.6732 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ------------------------------------------------------------------------------
      *** (2) Augmented Dickey-Fuller (ADF) Test:
      --------------------------------------------------
      - ADF Test: [Lag = 1] (No Trend) = 11.5440 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - ADF Test: [Lag = 1] ( Trend) = 8.8444 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ------------------------------------------------------------------------------
      *** (3) Augmented Phillips-Perron (APP) Test:
      --------------------------------------------------
      - APP Test: [Lag = 1] (No Trend) = 10.8299 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - APP Test: [Lag = 1] ( Trend) = 8.6843 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Panel Error Component Tests - Model= (sar)
      ==============================================================================
      * Panel Random Effects Tests
      Ho: No AR(1) Autocorrelation - Ha: AR(1) Autocorrelation
      Ho: Pooled OLS - No Significance Difference among Panels
      Ha: Random Effect - Significance Difference among Panels

      - Breusch-Pagan LM Test -Two Side =8415.2978 P-Value > Chi2(1) 0.0000
      - Breusch-Pagan ALM Test -Two Side =7242.5917 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Sosa-Escudero-Yoon LM Test -One Side = 91.7349 P-Value > Chi2(1) 0.0000
      - Sosa-Escudero-Yoon ALM Test -One Side = 85.1034 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Baltagi-Li LM Autocorrelation Test =1358.6621 P-Value > Chi2(1) 0.0000
      - Baltagi-Li ALM Autocorrelation Test = 185.9560 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Baltagi-Li LM AR(1) Joint Test =8601.2538 P-Value > Chi2(2) 0.0000
      ------------------------------------------------------------------------------



      spregxt logc logp logy, nc(46) wmfile(Wct_bin) model(sdm) mfx(log) pmfx tests predict(Yh) resid(Ue)


      【以下報(bào)告跟上文誤重】==============================================================================
      *** Binary (0/1) Weight Matrix: (1380x1380) : NC=46 NT=30 (Non Normalized)
      ------------------------------------------------------------------------------
      ==============================================================================
      * MLE Spatial Panel Lag Normal Model (SAR)
      ==============================================================================
      logc = logp logy
      ------------------------------------------------------------------------------
      Sample Size = 1380 | Cross Sections Number = 46
      Wald Test = 402.6298 | P-Value > Chi2(2) = 0.0000
      F-Test = 201.3149 | P-Value > F(2 , 1332) = 0.0000
      R2 (R-Squared) = 0.2262 | Raw Moments R2 = 0.9985
      R2a (Adjusted R2) = 0.1989 | Raw Moments R2 Adj = 0.9985
      Root MSE (Sigma) = 0.2007 | Log Likelihood Function = 348.1546
      ------------------------------------------------------------------------------
      - R2h= 0.2878 R2h Adj= 0.2627 F-Test = 278.23 P-Value > F(2 , 1332)0.0000
      - R2r= 0.9985 R2r Adj= 0.9985 F-Test = 3.1e+05 P-Value > F(3 , 1332)0.0000
      ------------------------------------------------------------------------------
      logc | Coefficient Std. err. z P>|z| [95% conf. interval]
      -------------+----------------------------------------------------------------
      logc |
      logp | -.8302382 .0349615 -23.75 0.000 -.8987615 -.7617148
      logy | .0440118 .0253011 1.74 0.082 -.0055775 .0936011
      _cons | 4.871404 .1186427 41.06 0.000 4.638869 5.103939
      -------------+----------------------------------------------------------------
      /Rho | -.002663 .0006449 -4.13 0.000 -.003927 -.001399
      /Sigma | .188014 .0035788 52.54 0.000 .1809997 .1950283
      ------------------------------------------------------------------------------
      LR Test SAR vs. OLS (Rho=0): 17.0515 P-Value > Chi2(1) 0.0000
      Acceptable Range for Rho: -0.3690 < Rho < 0.1970
      ------------------------------------------------------------------------------

      ==============================================================================
      * Panel Model Selection Diagnostic Criteria - Model= (sar)
      ==============================================================================
      - Log Likelihood Function LLF = 348.1546
      ---------------------------------------------------------------------------
      - Akaike Information Criterion (1974) AIC = 0.0391
      - Akaike Information Criterion (1973) Log AIC = -3.2426
      ---------------------------------------------------------------------------
      - Schwarz Criterion (1978) SC = 0.0395
      - Schwarz Criterion (1978) Log SC = -3.2313
      ---------------------------------------------------------------------------
      - Amemiya Prediction Criterion (1969) FPE = 0.0404
      - Hannan-Quinn Criterion (1979) HQ = 0.0392
      - Rice Criterion (1984) Rice = 0.0391
      - Shibata Criterion (1981) Shibata = 0.0391
      - Craven-Wahba Generalized Cross Validation (1979) GCV = 0.0391
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Spatial Panel Aautocorrelation Tests - Model= (sar)
      *** Binary (0/1) Weight Matrix (W): (Non Normalized)
      ==============================================================================
      Ho: Error has No Spatial AutoCorrelation
      Ha: Error has Spatial AutoCorrelation

      - GLOBAL Moran MI = 0.2234 P-Value > Z(11.941) 0.0000
      - GLOBAL Geary GC = 0.6853 P-Value > Z(-10.410) 0.0000
      - GLOBAL Getis-Ords GO = -0.9132 P-Value > Z(-11.941) 0.0000
      ------------------------------------------------------------------------------
      - Moran MI Error Test = 2.9432 P-Value > Z(156.817) 0.0032
      ------------------------------------------------------------------------------
      - LM Error (Burridge) = 140.1836 P-Value > Chi2(1) 0.0000
      - LM Error (Robust) = 150.8628 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      Ho: Spatial Lagged Dependent Variable has No Spatial AutoCorrelation
      Ha: Spatial Lagged Dependent Variable has Spatial AutoCorrelation

      - LM Lag (Anselin) = 23.8390 P-Value > Chi2(1) 0.0000
      - LM Lag (Robust) = 34.5182 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      Ho: No General Spatial AutoCorrelation
      Ha: General Spatial AutoCorrelation

      - LM SAC (LMErr+LMLag_R) = 174.7018 P-Value > Chi2(2) 0.0000
      - LM SAC (LMLag+LMErr_R) = 174.7018 P-Value > Chi2(2) 0.0000
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Panel Unit Roots Tests - Model= (sar)
      ==============================================================================
      Ho: All Panels are Stationary - Ha: Some Panels Have Unit Roots

      - Hadri Z Test (No Trend - No Robust) = 87.2984 P-Value > Z(0,1) 0.0000
      - Hadri Z Test (No Trend - Robust) = 72.1427 P-Value > Z(0,1) 0.0000
      - Hadri Z Test ( Trend - No Robust) = 74.7931 P-Value > Z(0,1) 0.0000
      - Hadri Z Test ( Trend - Robust) = 64.7472 P-Value > Z(0,1) 0.0000
      ------------------------------------------------------------------------------
      ==============================================================================
      * (1) (DF): Dickey-Fuller Test
      * (2) (ADF): Augmented Dickey-Fuller Test
      * (3) (APP): Augmented Phillips-Perron Test
      --------------------------------------------------
      Ho: All Panels Have Unit Roots (Non stationary)
      Ha: At Least One Panel is Stationary
      ------------------------------------------------------------------------------
      Ho: Non Stationary [0.05, 0.01 < P-Value]
      Ha: Stationary [0.05, 0.01 > P-Value]
      ------------------------------------------------------------------------------
      *** (1) Dickey-Fuller (DF) Test:
      --------------------------------------------------
      - DF Test: [Lag = 0] (No Trend) = 10.2853 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - DF Test: [Lag = 0] ( Trend) = 8.6732 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ------------------------------------------------------------------------------
      *** (2) Augmented Dickey-Fuller (ADF) Test:
      --------------------------------------------------
      - ADF Test: [Lag = 1] (No Trend) = 11.5440 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - ADF Test: [Lag = 1] ( Trend) = 8.8444 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ------------------------------------------------------------------------------
      *** (3) Augmented Phillips-Perron (APP) Test:
      --------------------------------------------------
      - APP Test: [Lag = 1] (No Trend) = 10.8299 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------
      - APP Test: [Lag = 1] ( Trend) = 8.6843 P-Value > Z(0,1) 1.0000
      * Since [.05 < 1.0000]: Variable (logc) has Non Stationary (Unit Roots)
      ------------------------------------------------------------------------------

      ==============================================================================
      *** Panel Error Component Tests - Model= (sar)
      ==============================================================================
      * Panel Random Effects Tests
      Ho: No AR(1) Autocorrelation - Ha: AR(1) Autocorrelation
      Ho: Pooled OLS - No Significance Difference among Panels
      Ha: Random Effect - Significance Difference among Panels

      - Breusch-Pagan LM Test -Two Side =8415.2978 P-Value > Chi2(1) 0.0000
      - Breusch-Pagan ALM Test -Two Side =7242.5917 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Sosa-Escudero-Yoon LM Test -One Side = 91.7349 P-Value > Chi2(1) 0.0000
      - Sosa-Escudero-Yoon ALM Test -One Side = 85.1034 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Baltagi-Li LM Autocorrelation Test =1358.6621 P-Value > Chi2(1) 0.0000
      - Baltagi-Li ALM Autocorrelation Test = 185.9560 P-Value > Chi2(1) 0.0000
      ------------------------------------------------------------------------------
      - Baltagi-Li LM AR(1) Joint Test =8601.2538 P-Value > Chi2(2) 0.0000
      ------------------------------------------------------------------------------

        本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多