乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      AI自動(dòng)化辦公:批量將Excel表格英文內(nèi)容翻譯為中文

       AIGC部落 2024-05-31 發(fā)布于廣東

      有一個(gè)50列的表格,里面都是英文,要翻譯成中文:

      在ChatGPT中輸入提示詞:

      你是一個(gè)開發(fā)AI大模型應(yīng)用的Python編程專家,要完成以下任務(wù)的Python腳本:

      打開Excel文件:"F:\AI自媒體內(nèi)容\AI行業(yè)數(shù)據(jù)分析\poetop50bots.xlsx"

      讀取A2到B51這個(gè)區(qū)域中的每一個(gè)單元格內(nèi)容,

      調(diào)用deepseek-chat模型(上下文長(zhǎng)度32K,最大輸出長(zhǎng)度4K)來將單元格的內(nèi)容翻譯成中文;

      模型的base_url為:https://api.deepseek.com

      模型的api_key為:XXX

      temperature 參數(shù)設(shè)置認(rèn)為 1.1

      提示詞為:把英文內(nèi)容翻譯為中文

      調(diào)用deepseek-chat模型API的示例參照【】里面的內(nèi)容:

      【# Please install OpenAI SDK first:`pip3 install openai`

      from openai import OpenAI

      client = OpenAI(api_key="<deepseek api key>", base_url="https://api.deepseek.com")

      response = client.chat.completions.create(

      model="deepseek-chat",

      messages=[

      {"role": "system", "content": "You are a helpful assistant"},

      {"role": "user", "content": "Hello"},

      ],

      stream=False

      )

      print(response.choices[0].message.content)

      模型返回的json數(shù)據(jù)示例:

      {

      "id": "65c327b06948c8d635c8316c6885d95e",

      "choices": [

      {

      "index": 0,

      "message": {

      "content": "Hello! How can I assist you with your programming or computer science questions today?",

      "role": "assistant"

      },

      "finish_reason": "stop",

      "logprobs": null

      }

      ],

      "created": 1717069572,

      "model": "deepseek-coder",

      "system_fingerprint": "fp_ded2115e5a",

      "object": "chat.completion",

      "usage": {

      "prompt_tokens": 18,

      "completion_tokens": 16,

      "total_tokens": 34

      }

      }

      解析返回的JSON數(shù)據(jù),獲取翻譯后的文本,將翻譯后的文本內(nèi)容寫入一個(gè)新的表格文件中;

      注意:

      每一步都要輸出相關(guān)信息到屏幕上

      如果單元格的文本長(zhǎng)度或者翻譯返回的文本長(zhǎng)度超過模型限制,那就進(jìn)行拆分,然后組合在一起;

      Chatpgt生成的代碼:

      import pandas as pd

      import requests

      import json

      # 讀取Excel文件

      file_path = "F:\\AI自媒體內(nèi)容\\AI行業(yè)數(shù)據(jù)分析\\poetop50bots.xlsx"

      df = pd.read_excel(file_path, header=None, usecols="A:B", skiprows=1, nrows=50)

      # DeepSeek API配置信息

      base_url = "https://api.deepseek.com"

      api_key = "XXX"

      model = "deepseek-chat"

      def translate_text(text):

      headers = {

      'Authorization': f'Bearer {api_key}',

      'Content-Type': 'application/json'

      }

      data = {

      "model": model,

      "messages": [

      {"role": "system", "content": "You are a helpful assistant"},

      {"role": "user", "content": f"把英文內(nèi)容翻譯為中文:{text}"}

      ],

      "stream": False

      }

      response = requests.post(f"{base_url}/v1/chat/completions", headers=headers, json=data)

      response.raise_for_status() # 檢查請(qǐng)求是否成功

      translated_text = response.json()['choices'][0]['message']['content']

      return translated_text

      def split_text(text, max_length):

      return [text[i:i + max_length] for i in range(0, len(text), max_length)]

      # 輸出每一步的信息到屏幕上

      print(f"讀取文件: {file_path}")

      for index, row in df.iterrows():

      for col in [0, 1]: # 遍歷A和B列

      text = row[col]

      if pd.isna(text):

      continue

      text = str(text)

      print(f"正在翻譯單元格({index+2}, {chr(col+65)}): {text}")

      max_input_length = 32000

      max_output_length = 4000

      if len(text) > max_input_length:

      parts = split_text(text, max_input_length)

      translated_parts = [translate_text(part) for part in parts]

      translated_text = ''.join(translated_parts)

      else:

      translated_text = translate_text(text)

      print(f"翻譯結(jié)果: {translated_text}")

      # 將翻譯后的文本寫入DataFrame中

      df.iat[index, col] = translated_text

      # 將結(jié)果寫回到新的Excel文件中

      new_file_path = "F:\\AI自媒體內(nèi)容\\AI行業(yè)數(shù)據(jù)分析\\translated_poetop50bots.xlsx"

      df.to_excel(new_file_path, index=False, header=False, startrow=1)

      print(f"翻譯完成,結(jié)果已寫入文件: {new_file_path}")

        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評(píng)論

        發(fā)表

        請(qǐng)遵守用戶 評(píng)論公約

        類似文章 更多