乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      SQL SERVER海量數(shù)據(jù)庫的查詢優(yōu)化及分頁算法方案

       moonboat 2007-01-28
      很多人不知道SQL語句在SQL SERVER中是如何執(zhí)行的,他們擔(dān)心自己所寫的SQL語句會(huì)被SQL SERVER誤解。比如:
      select * from table1 where name=‘zhangsan‘ and tID > 10000
        和執(zhí)行:
      select * from table1 where tID > 10000 and name=‘zhangsan‘
        一些人不知道以上兩條語句的執(zhí)行效率是否一樣,因?yàn)槿绻唵蔚膹恼Z句先后上看,這兩個(gè)語句的確是不一樣,如果tID是一個(gè)聚合索引,那么后一句僅僅從表的10000條以后的記錄中查找就行了;而前一句則要先從全表中查找看有幾個(gè)name=‘zhangsan‘的,而后再根據(jù)限制條件條件tID>10000來提出查詢結(jié)果。
        事實(shí)上,這樣的擔(dān)心是不必要的。SQL SERVER中有一個(gè)“查詢分析優(yōu)化器”,它可以計(jì)算出where子句中的搜索條件并確定哪個(gè)索引能縮小表掃描的搜索空間,也就是說,它能實(shí)現(xiàn)自動(dòng)優(yōu)化。
        雖然查詢優(yōu)化器可以根據(jù)where子句自動(dòng)的進(jìn)行查詢優(yōu)化,但大家仍然有必要了解一下“查詢優(yōu)化器”的工作原理,如非這樣,有時(shí)查詢優(yōu)化器就會(huì)不按照您的本意進(jìn)行快速查詢。
        在查詢分析階段,查詢優(yōu)化器查看查詢的每個(gè)階段并決定限制需要掃描的數(shù)據(jù)量是否有用。如果一個(gè)階段可以被用作一個(gè)掃描參數(shù)(SARG),那么就稱之為可優(yōu)化的,并且可以利用索引快速獲得所需數(shù)據(jù)。
        SARG的定義:用于限制搜索的一個(gè)操作,因?yàn)樗ǔJ侵敢粋€(gè)特定的匹配,一個(gè)值得范圍內(nèi)的匹配或者兩個(gè)以上條件的AND連接。形式如下:
      列名 操作符 <常數(shù) 或 變量>

      <常數(shù) 或 變量> 操作符列名
        列名可以出現(xiàn)在操作符的一邊,而常數(shù)或變量出現(xiàn)在操作符的另一邊。如:
      Name=’張三’
      價(jià)格>5000
      5000<價(jià)格
      Name=’張三’ and 價(jià)格>5000
        如果一個(gè)表達(dá)式不能滿足SARG的形式,那它就無法限制搜索的范圍了,也就是SQL SERVER必須對每一行都判斷它是否滿足WHERE子句中的所有條件。所以一個(gè)索引對于不滿足SARG形式的表達(dá)式來說是無用的。
        介紹完SARG后,我們來總結(jié)一下使用SARG以及在實(shí)踐中遇到的和某些資料上結(jié)論不同的經(jīng)驗(yàn):

        1、Like語句是否屬于SARG取決于所使用的通配符的類型

        如:name like ‘張%’ ,這就屬于SARG

        而:name like ‘%張’ ,就不屬于SARG。

        原因是通配符%在字符串的開通使得索引無法使用。

        2、or 會(huì)引起全表掃描

      Name=’張三’ and 價(jià)格>5000 符號SARG,而:Name=’張三’ or 價(jià)格>5000 則不符合SARG。使用or會(huì)引起全表掃描。

        3、非操作符、函數(shù)引起的不滿足SARG形式的語句

        不滿足SARG形式的語句最典型的情況就是包括非操作符的語句,如:NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等,另外還有函數(shù)。下面就是幾個(gè)不滿足SARG形式的例子:

      ABS(價(jià)格)<5000

      Name like ‘%三’

        有些表達(dá)式,如:

      WHERE 價(jià)格*2>5000

        SQL SERVER也會(huì)認(rèn)為是SARG,SQL SERVER會(huì)將此式轉(zhuǎn)化為:

      WHERE 價(jià)格>2500/2

        但我們不推薦這樣使用,因?yàn)橛袝r(shí)SQL SERVER不能保證這種轉(zhuǎn)化與原始表達(dá)式是完全等價(jià)的。

        4、IN 的作用相當(dāng)與OR

        語句:

      Select * from table1 where tid in (2,3)

        和

      Select * from table1 where tid=2 or tid=3

        是一樣的,都會(huì)引起全表掃描,如果tid上有索引,其索引也會(huì)失效。

        5、盡量少用NOT

        6、exists 和 in 的執(zhí)行效率是一樣的

        很多資料上都顯示說,exists要比in的執(zhí)行效率要高,同時(shí)應(yīng)盡可能的用not exists來代替not in。但事實(shí)上,我試驗(yàn)了一下,發(fā)現(xiàn)二者無論是前面帶不帶not,二者之間的執(zhí)行效率都是一樣的。因?yàn)樯婕白硬樵?我們試驗(yàn)這次用SQL SERVER自帶的pubs數(shù)據(jù)庫。運(yùn)行前我們可以把SQL SERVER的statistics I/O狀態(tài)打開。

        (1)select title,price from titles where title_id in (select title_id from sales where qty>30)

        該句的執(zhí)行結(jié)果為:

        表 ‘sales‘。掃描計(jì)數(shù) 18,邏輯讀 56 次,物理讀 0 次,預(yù)讀 0 次。

        表 ‘titles‘。掃描計(jì)數(shù) 1,邏輯讀 2 次,物理讀 0 次,預(yù)讀 0 次。

        (2)select title,price from titles where exists (select * from sales where sales.title_id=titles.title_id and qty>30)

        第二句的執(zhí)行結(jié)果為:

        表 ‘sales‘。掃描計(jì)數(shù) 18,邏輯讀 56 次,物理讀 0 次,預(yù)讀 0 次。

        表 ‘titles‘。掃描計(jì)數(shù) 1,邏輯讀 2 次,物理讀 0 次,預(yù)讀 0 次。

        我們從此可以看到用exists和用in的執(zhí)行效率是一樣的。

        7、用函數(shù)charindex()和前面加通配符%的LIKE執(zhí)行效率一樣

        前面,我們談到,如果在LIKE前面加上通配符%,那么將會(huì)引起全表掃描,所以其執(zhí)行效率是低下的。但有的資料介紹說,用函數(shù)charindex()來代替LIKE速度會(huì)有大的提升,經(jīng)我試驗(yàn),發(fā)現(xiàn)這種說明也是錯(cuò)誤的:

      select gid,title,fariqi,reader from tgongwen where charindex(‘刑偵支隊(duì)‘,reader)>0 and fariqi>‘2004-5-5‘

        用時(shí):7秒,另外:掃描計(jì)數(shù) 4,邏輯讀 7155 次,物理讀 0 次,預(yù)讀 0 次。

      select gid,title,fariqi,reader from tgongwen where reader like ‘%‘ + ‘刑偵支隊(duì)‘ + ‘%‘ and fariqi>‘2004-5-5‘

        用時(shí):7秒,另外:掃描計(jì)數(shù) 4,邏輯讀 7155 次,物理讀 0 次,預(yù)讀 0 次。

        8、union并不絕對比or的執(zhí)行效率高

        我們前面已經(jīng)談到了在where子句中使用or會(huì)引起全表掃描,一般的,我所見過的資料都是推薦這里用union來代替or。事實(shí)證明,這種說法對于大部分都是適用的。

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ or gid>9990000

        用時(shí):68秒。掃描計(jì)數(shù) 1,邏輯讀 404008 次,物理讀 283 次,預(yù)讀 392163 次。

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ 

      union

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000

        用時(shí):9秒。掃描計(jì)數(shù) 8,邏輯讀 67489 次,物理讀 216 次,預(yù)讀 7499 次。

        看來,用union在通常情況下比用or的效率要高的多。

        但經(jīng)過試驗(yàn),筆者發(fā)現(xiàn)如果or兩邊的查詢列是一樣的話,那么用union則反倒和用or的執(zhí)行速度差很多,雖然這里union掃描的是索引,而or掃描的是全表。

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ or fariqi=‘2004-2-5‘

        用時(shí):6423毫秒。掃描計(jì)數(shù) 2,邏輯讀 14726 次,物理讀 1 次,預(yù)讀 7176 次。

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ 

      union

      select gid,fariqi,neibuyonghu,reader,title from Tgongwen where  fariqi=‘2004-2-5‘

        用時(shí):11640毫秒。掃描計(jì)數(shù) 8,邏輯讀 14806 次,物理讀 108 次,預(yù)讀 1144 次。

        9、字段提取要按照“需多少、提多少”的原則,避免“select *”

        我們來做一個(gè)試驗(yàn):

      select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc

        用時(shí):4673毫秒

      select top 10000 gid,fariqi,title from tgongwen order by gid desc

        用時(shí):1376毫秒

      select top 10000 gid,fariqi from tgongwen order by gid desc

        用時(shí):80毫秒

        由此看來,我們每少提取一個(gè)字段,數(shù)據(jù)的提取速度就會(huì)有相應(yīng)的提升。提升的速度還要看您舍棄的字段的大小來判斷。

        10、count(*)不比count(字段)慢

        某些資料上說:用*會(huì)統(tǒng)計(jì)所有列,顯然要比一個(gè)世界的列名效率低。這種說法其實(shí)是沒有根據(jù)的。我們來看:

      select count(*) from Tgongwen

        用時(shí):1500毫秒

      select count(gid) from Tgongwen 

        用時(shí):1483毫秒

      select count(fariqi) from Tgongwen

        用時(shí):3140毫秒

      select count(title) from Tgongwen

        用時(shí):52050毫秒

        從以上可以看出,如果用count(*)和用count(主鍵)的速度是相當(dāng)?shù)?而count(*)卻比其他任何除主鍵以外的字段匯總速度要快,而且字段越長,匯總的速度就越慢。我想,如果用count(*), SQL SERVER可能會(huì)自動(dòng)查找最小字段來匯總的。當(dāng)然,如果您直接寫count(主鍵)將會(huì)來的更直接些。

        11、order by按聚集索引列排序效率最高

        我們來看:(gid是主鍵,fariqi是聚合索引列)

      select top 10000 gid,fariqi,reader,title from tgongwen

        用時(shí):196 毫秒。 掃描計(jì)數(shù) 1,邏輯讀 289 次,物理讀 1 次,預(yù)讀 1527 次。

      select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc

        用時(shí):4720毫秒。 掃描計(jì)數(shù) 1,邏輯讀 41956 次,物理讀 0 次,預(yù)讀 1287 次。

      select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc

        用時(shí):4736毫秒。 掃描計(jì)數(shù) 1,邏輯讀 55350 次,物理讀 10 次,預(yù)讀 775 次。

      select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc

        用時(shí):173毫秒。 掃描計(jì)數(shù) 1,邏輯讀 290 次,物理讀 0 次,預(yù)讀 0 次。

      select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc

        用時(shí):156毫秒。 掃描計(jì)數(shù) 1,邏輯讀 289 次,物理讀 0 次,預(yù)讀 0 次。

        從以上我們可以看出,不排序的速度以及邏輯讀次數(shù)都是和“order by 聚集索引列” 的速度是相當(dāng)?shù)?但這些都比“order by 非聚集索引列”的查詢速度是快得多的。

        同時(shí),按照某個(gè)字段進(jìn)行排序的時(shí)候,無論是正序還是倒序,速度是基本相當(dāng)?shù)摹?br>
        12、高效的TOP

        事實(shí)上,在查詢和提取超大容量的數(shù)據(jù)集時(shí),影響數(shù)據(jù)庫響應(yīng)時(shí)間的最大因素不是數(shù)據(jù)查找,而是物理的I/0操作。如:

      select top 10 * from (

      select top 10000 gid,fariqi,title from tgongwen

      where neibuyonghu=‘辦公室‘

      order by gid desc) as a

      order by gid asc

        這條語句,從理論上講,整條語句的執(zhí)行時(shí)間應(yīng)該比子句的執(zhí)行時(shí)間長,但事實(shí)相反。因?yàn)?子句執(zhí)行后返回的是10000條記錄,而整條語句僅返回10條語句,所以影響數(shù)據(jù)庫響應(yīng)時(shí)間最大的因素是物理I/O操作。而限制物理I/O操作此處的最有效方法之一就是使用TOP關(guān)鍵詞了。TOP關(guān)鍵詞是SQL SERVER中經(jīng)過系統(tǒng)優(yōu)化過的一個(gè)用來提取前幾條或前幾個(gè)百分比數(shù)據(jù)的詞。經(jīng)筆者在實(shí)踐中的應(yīng)用,發(fā)現(xiàn)TOP確實(shí)很好用,效率也很高。但這個(gè)詞在另外一個(gè)大型數(shù)據(jù)庫ORACLE中卻沒有,這不能說不是一個(gè)遺憾,雖然在ORACLE中可以用其他方法(如:rownumber)來解決。在以后的關(guān)于“實(shí)現(xiàn)千萬級數(shù)據(jù)的分頁顯示存儲(chǔ)過程”的討論中,我們就將用到TOP這個(gè)關(guān)鍵詞。

        到此為止,我們上面討論了如何實(shí)現(xiàn)從大容量的數(shù)據(jù)庫中快速地查詢出您所需要的數(shù)據(jù)方法。當(dāng)然,我們介紹的這些方法都是“軟”方法,在實(shí)踐中,我們還要考慮各種“硬”因素,如:網(wǎng)絡(luò)性能、服務(wù)器的性能、操作系統(tǒng)的性能,甚至網(wǎng)卡、交換機(jī)等。

       三、實(shí)現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲(chǔ)過程

        建立一個(gè)web 應(yīng)用,分頁瀏覽功能必不可少。這個(gè)問題是數(shù)據(jù)庫處理中十分常見的問題。經(jīng)典的數(shù)據(jù)分頁方法是:ADO 紀(jì)錄集分頁法,也就是利用ADO自帶的分頁功能(利用游標(biāo))來實(shí)現(xiàn)分頁。但這種分頁方法僅適用于較小數(shù)據(jù)量的情形,因?yàn)橛螛?biāo)本身有缺點(diǎn):游標(biāo)是存放在內(nèi)存中,很費(fèi)內(nèi)存。游標(biāo)一建立,就將相關(guān)的記錄鎖住,直到取消游標(biāo)。游標(biāo)提供了對特定集合中逐行掃描的手段,一般使用游標(biāo)來逐行遍歷數(shù)據(jù),根據(jù)取出數(shù)據(jù)條件的不同進(jìn)行不同的操作。而對于多表和大表中定義的游標(biāo)(大的數(shù)據(jù)集合)循環(huán)很容易使程序進(jìn)入一個(gè)漫長的等待甚至死機(jī)。

        更重要的是,對于非常大的數(shù)據(jù)模型而言,分頁檢索時(shí),如果按照傳統(tǒng)的每次都加載整個(gè)數(shù)據(jù)源的方法是非常浪費(fèi)資源的?,F(xiàn)在流行的分頁方法一般是檢索頁面大小的塊區(qū)的數(shù)據(jù),而非檢索所有的數(shù)據(jù),然后單步執(zhí)行當(dāng)前行。

        最早較好地實(shí)現(xiàn)這種根據(jù)頁面大小和頁碼來提取數(shù)據(jù)的方法大概就是“俄羅斯存儲(chǔ)過程”。這個(gè)存儲(chǔ)過程用了游標(biāo),由于游標(biāo)的局限性,所以這個(gè)方法并沒有得到大家的普遍認(rèn)可。

        后來,網(wǎng)上有人改造了此存儲(chǔ)過程,下面的存儲(chǔ)過程就是結(jié)合我們的辦公自動(dòng)化實(shí)例寫的分頁存儲(chǔ)過程:

      CREATE procedure pagination1

      (@pagesize int,  --頁面大小,如每頁存儲(chǔ)20條記錄

      @pageindex int   --當(dāng)前頁碼

      )

      as

      set nocount on

      begin

      declare @indextable table(id int identity(1,1),nid int)  --定義表變量

      declare @PageLowerBound int  --定義此頁的底碼

      declare @PageUpperBound int  --定義此頁的頂碼

      set @PageLowerBound=(@pageindex-1)*@pagesize

      set @PageUpperBound=@PageLowerBound+@pagesize

      set rowcount @PageUpperBound

      insert into @indextable(nid) select gid from TGongwen where fariqi >dateadd(day,-365,getdate()) order by fariqi desc

      select O.gid,O.mid,O.title,O.fadanwei,O.fariqi from TGongwen O,@indextable t where O.gid=t.nid

      and t.id>@PageLowerBound and t.id<=@PageUpperBound order by t.id

      end

      set nocount off

        以上存儲(chǔ)過程運(yùn)用了SQL SERVER的最新技術(shù)――表變量。應(yīng)該說這個(gè)存儲(chǔ)過程也是一個(gè)非常優(yōu)秀的分頁存儲(chǔ)過程。當(dāng)然,在這個(gè)過程中,您也可以把其中的表變量寫成臨時(shí)表:CREATE TABLE #Temp。但很明顯,在SQL SERVER中,用臨時(shí)表是沒有用表變量快的。所以筆者剛開始使用這個(gè)存儲(chǔ)過程時(shí),感覺非常的不錯(cuò),速度也比原來的ADO的好。但后來,我又發(fā)現(xiàn)了比此方法更好的方法。

        筆者曾在網(wǎng)上看到了一篇小短文《從數(shù)據(jù)表中取出第n條到第m條的記錄的方法》,全文如下:

      從publish 表中取出第 n 條到第 m 條的記錄: 
      SELECT TOP m-n+1 * 
      FROM publish 
      WHERE (id NOT IN 
          (SELECT TOP n-1 id 
           FROM publish)) 

      id 為publish 表的關(guān)鍵字 

        我當(dāng)時(shí)看到這篇文章的時(shí)候,真的是精神為之一振,覺得思路非常得好。等到后來,我在作辦公自動(dòng)化系統(tǒng)(ASP.NET+ C#+SQL SERVER)的時(shí)候,忽然想起了這篇文章,我想如果把這個(gè)語句改造一下,這就可能是一個(gè)非常好的分頁存儲(chǔ)過程。于是我就滿網(wǎng)上找這篇文章,沒想到,文章還沒找到,卻找到了一篇根據(jù)此語句寫的一個(gè)分頁存儲(chǔ)過程,這個(gè)存儲(chǔ)過程也是目前較為流行的一種分頁存儲(chǔ)過程,我很后悔沒有爭先把這段文字改造成存儲(chǔ)過程:

      CREATE PROCEDURE pagination2
      (
       @SQL nVARCHAR(4000),    --不帶排序語句的SQL語句
       @Page int,              --頁碼
       @RecsPerPage int,       --每頁容納的記錄數(shù)
       @ID VARCHAR(255),       --需要排序的不重復(fù)的ID號
       @Sort VARCHAR(255)      --排序字段及規(guī)則
      )
      AS

      DECLARE @Str nVARCHAR(4000)

      SET @Str=‘SELECT   TOP ‘+CAST(@RecsPerPage AS VARCHAR(20))+‘ * FROM (‘+@SQL+‘) T WHERE T.‘+@ID+‘NOT IN 
      (SELECT   TOP ‘+CAST((@RecsPerPage*(@Page-1)) AS VARCHAR(20))+‘ ‘+@ID+‘ FROM (‘+@SQL+‘) T9 ORDER BY ‘+@Sort+‘) ORDER BY ‘+@Sort

      PRINT @Str

      EXEC sp_ExecuteSql @Str
      GO

        其實(shí),以上語句可以簡化為:

      SELECT TOP 頁大小 *

      FROM Table1

      WHERE (ID NOT IN

                (SELECT TOP 頁大小*頁數(shù) id

               FROM 表

               ORDER BY id))

      ORDER BY ID

        但這個(gè)存儲(chǔ)過程有一個(gè)致命的缺點(diǎn),就是它含有NOT IN字樣。雖然我可以把它改造為:

      SELECT TOP 頁大小 *

      FROM Table1

      WHERE not exists

      (select * from (select top (頁大小*頁數(shù)) * from table1 order by id) b where b.id=a.id )

      order by id

        即,用not exists來代替not in,但我們前面已經(jīng)談過了,二者的執(zhí)行效率實(shí)際上是沒有區(qū)別的。

        既便如此,用TOP 結(jié)合NOT IN的這個(gè)方法還是比用游標(biāo)要來得快一些。

        雖然用not exists并不能挽救上個(gè)存儲(chǔ)過程的效率,但使用SQL SERVER中的TOP關(guān)鍵字卻是一個(gè)非常明智的選擇。因?yàn)榉猪搩?yōu)化的最終目的就是避免產(chǎn)生過大的記錄集,而我們在前面也已經(jīng)提到了TOP的優(yōu)勢,通過TOP 即可實(shí)現(xiàn)對數(shù)據(jù)量的控制。

        在分頁算法中,影響我們查詢速度的關(guān)鍵因素有兩點(diǎn):TOP和NOT IN。TOP可以提高我們的查詢速度,而NOT IN會(huì)減慢我們的查詢速度,所以要提高我們整個(gè)分頁算法的速度,就要徹底改造NOT IN,同其他方法來替代它。

        我們知道,幾乎任何字段,我們都可以通過max(字段)或min(字段)來提取某個(gè)字段中的最大或最小值,所以如果這個(gè)字段不重復(fù),那么就可以利用這些不重復(fù)的字段的max或min作為分水嶺,使其成為分頁算法中分開每頁的參照物。在這里,我們可以用操作符“>”或“<”號來完成這個(gè)使命,使查詢語句符合SARG形式。如:

      Select top 10 * from table1 where id>200

        于是就有了如下分頁方案:

      select top 頁大小 *

      from table1 

      where id>

            (select max (id) from 

            (select top ((頁碼-1)*頁大小) id from table1 order by id) as T

             )     

        order by id

        在選擇即不重復(fù)值,又容易分辨大小的列時(shí),我們通常會(huì)選擇主鍵。下表列出了筆者用有著1000萬數(shù)據(jù)的辦公自動(dòng)化系統(tǒng)中的表,在以GID(GID是主鍵,但并不是聚集索引。)為排序列、提取gid,fariqi,title字段,分別以第1、10、100、500、1000、1萬、10萬、25萬、50萬頁為例,測試以上三種分頁方案的執(zhí)行速度:(單位:毫秒)

      頁  碼
       方案1
       方案2
       方案3
       
      1
       60
       30
       76
       
      10
       46
       16
       63
       
      100
       1076
       720
       130
       
      500
       540
       12943
       83
       
      1000
       17110
       470
       250
       
      1萬
       24796
       4500
       140
       
      10萬
       38326
       42283
       1553
       
      25萬
       28140
       128720
       2330
       
      50萬
       121686
       127846
       7168
       

        從上表中,我們可以看出,三種存儲(chǔ)過程在執(zhí)行100頁以下的分頁命令時(shí),都是可以信任的,速度都很好。但第一種方案在執(zhí)行分頁1000頁以上后,速度就降了下來。第二種方案大約是在執(zhí)行分頁1萬頁以上后速度開始降了下來。而第三種方案卻始終沒有大的降勢,后勁仍然很足。

        在確定了第三種分頁方案后,我們可以據(jù)此寫一個(gè)存儲(chǔ)過程。大家知道SQL SERVER的存儲(chǔ)過程是事先編譯好的SQL語句,它的執(zhí)行效率要比通過WEB頁面?zhèn)鱽淼腟QL語句的執(zhí)行效率要高。下面的存儲(chǔ)過程不僅含有分頁方案,還會(huì)根據(jù)頁面?zhèn)鱽淼膮?shù)來確定是否進(jìn)行數(shù)據(jù)總數(shù)統(tǒng)計(jì)。

      -- 獲取指定頁的數(shù)據(jù)

      CREATE PROCEDURE pagination3

      @tblName   varchar(255),       -- 表名

      @strGetFields varchar(1000) = ‘*‘,  -- 需要返回的列 

      @fldName varchar(255)=‘‘,      -- 排序的字段名

      @PageSize   int = 10,          -- 頁尺寸

      @PageIndex  int = 1,           -- 頁碼

      @doCount  bit = 0,   -- 返回記錄總數(shù), 非 0 值則返回

      @OrderType bit = 0,  -- 設(shè)置排序類型, 非 0 值則降序

      @strWhere  varchar(1500) = ‘‘  -- 查詢條件 (注意: 不要加 where)

      AS

      declare @strSQL   varchar(5000)       -- 主語句

      declare @strTmp   varchar(110)        -- 臨時(shí)變量

      declare @strOrder varchar(400)        -- 排序類型

       

      if @doCount != 0

        begin

          if @strWhere !=‘‘

          set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere

          else

          set @strSQL = "select count(*) as Total from [" + @tblName + "]"

      end  

      --以上代碼的意思是如果@doCount傳遞過來的不是0,就執(zhí)行總數(shù)統(tǒng)計(jì)。以下的所有代碼都是@doCount為0的情況

      else

      begin

       

      if @OrderType != 0

      begin

          set @strTmp = "<(select min"

      set @strOrder = " order by [" + @fldName +"] desc"

      --如果@OrderType不是0,就執(zhí)行降序,這句很重要!

      end

      else

      begin

          set @strTmp = ">(select max"

          set @strOrder = " order by [" + @fldName +"] asc"

      end

       

      if @PageIndex = 1

      begin

          if @strWhere != ‘‘   

          set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from [" + @tblName + "] where " + @strWhere + " " + @strOrder

           else

           set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["+ @tblName + "] "+ @strOrder

      --如果是第一頁就執(zhí)行以上代碼,這樣會(huì)加快執(zhí)行速度

      end

      else

      begin

      --以下代碼賦予了@strSQL以真正執(zhí)行的SQL代碼

      set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["

          + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder

       

      if @strWhere != ‘‘

          set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["

              + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["

              + @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["

              + @fldName + "] from [" + @tblName + "] where " + @strWhere + " "

              + @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder

      end 

      end   

      exec (@strSQL)

      GO

        上面的這個(gè)存儲(chǔ)過程是一個(gè)通用的存儲(chǔ)過程,其注釋已寫在其中了。

        在大數(shù)據(jù)量的情況下,特別是在查詢最后幾頁的時(shí)候,查詢時(shí)間一般不會(huì)超過9秒;而用其他存儲(chǔ)過程,在實(shí)踐中就會(huì)導(dǎo)致超時(shí),所以這個(gè)存儲(chǔ)過程非常適用于大容量數(shù)據(jù)庫的查詢。

        筆者希望能夠通過對以上存儲(chǔ)過程的解析,能給大家?guī)硪欢ǖ膯⑹?并給工作帶來一定的效率提升,同時(shí)希望同行提出更優(yōu)秀的實(shí)時(shí)數(shù)據(jù)分頁算法。

      四、聚集索引的重要性和如何選擇聚集索引

        在上一節(jié)的標(biāo)題中,筆者寫的是:實(shí)現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲(chǔ)過程。這是因?yàn)樵趯⒈敬鎯?chǔ)過程應(yīng)用于“辦公自動(dòng)化”系統(tǒng)的實(shí)踐中時(shí),筆者發(fā)現(xiàn)這第三種存儲(chǔ)過程在小數(shù)據(jù)量的情況下,有如下現(xiàn)象:

        1、分頁速度一般維持在1秒和3秒之間。

        2、在查詢最后一頁時(shí),速度一般為5秒至8秒,哪怕分頁總數(shù)只有3頁或30萬頁。

        雖然在超大容量情況下,這個(gè)分頁的實(shí)現(xiàn)過程是很快的,但在分前幾頁時(shí),這個(gè)1-3秒的速度比起第一種甚至沒有經(jīng)過優(yōu)化的分頁方法速度還要慢,借用戶的話說就是“還沒有ACCESS數(shù)據(jù)庫速度快”,這個(gè)認(rèn)識足以導(dǎo)致用戶放棄使用您開發(fā)的系統(tǒng)。

        筆者就此分析了一下,原來產(chǎn)生這種現(xiàn)象的癥結(jié)是如此的簡單,但又如此的重要:排序的字段不是聚集索引!

        本篇文章的題目是:“查詢優(yōu)化及分頁算法方案”。筆者只所以把“查詢優(yōu)化”和“分頁算法”這兩個(gè)聯(lián)系不是很大的論題放在一起,就是因?yàn)槎叨夹枰粋€(gè)非常重要的東西――聚集索引。

        在前面的討論中我們已經(jīng)提到了,聚集索引有兩個(gè)最大的優(yōu)勢:

        1、以最快的速度縮小查詢范圍。

        2、以最快的速度進(jìn)行字段排序。

        第1條多用在查詢優(yōu)化時(shí),而第2條多用在進(jìn)行分頁時(shí)的數(shù)據(jù)排序。

        而聚集索引在每個(gè)表內(nèi)又只能建立一個(gè),這使得聚集索引顯得更加的重要。聚集索引的挑選可以說是實(shí)現(xiàn)“查詢優(yōu)化”和“高效分頁”的最關(guān)鍵因素。

        但要既使聚集索引列既符合查詢列的需要,又符合排序列的需要,這通常是一個(gè)矛盾。

        筆者前面“索引”的討論中,將fariqi,即用戶發(fā)文日期作為了聚集索引的起始列,日期的精確度為“日”。這種作法的優(yōu)點(diǎn),前面已經(jīng)提到了,在進(jìn)行劃時(shí)間段的快速查詢中,比用ID主鍵列有很大的優(yōu)勢。

        但在分頁時(shí),由于這個(gè)聚集索引列存在著重復(fù)記錄,所以無法使用max或min來最為分頁的參照物,進(jìn)而無法實(shí)現(xiàn)更為高效的排序。而如果將ID主鍵列作為聚集索引,那么聚集索引除了用以排序之外,沒有任何用處,實(shí)際上是浪費(fèi)了聚集索引這個(gè)寶貴的資源。

         為解決這個(gè)矛盾,筆者后來又添加了一個(gè)日期列,其默認(rèn)值為getdate()。用戶在寫入記錄時(shí),這個(gè)列自動(dòng)寫入當(dāng)時(shí)的時(shí)間,時(shí)間精確到毫秒。即使這樣,為了避免可能性很小的重合,還要在此列上創(chuàng)建UNIQUE約束。將此日期列作為聚集索引列。

        有了這個(gè)時(shí)間型聚集索引列之后,用戶就既可以用這個(gè)列查找用戶在插入數(shù)據(jù)時(shí)的某個(gè)時(shí)間段的查詢,又可以作為唯一列來實(shí)現(xiàn)max或min,成為分頁算法的參照物。

        經(jīng)過這樣的優(yōu)化,筆者發(fā)現(xiàn),無論是大數(shù)據(jù)量的情況下還是小數(shù)據(jù)量的情況下,分頁速度一般都是幾十毫秒,甚至0毫秒。而用日期段縮小范圍的查詢速度比原來也沒有任何遲鈍。

        聚集索引是如此的重要和珍貴,所以筆者總結(jié)了一下,一定要將聚集索引建立在:

        1、您最頻繁使用的、用以縮小查詢范圍的字段上;

        2、您最頻繁使用的、需要排序的字段上。

        結(jié)束語:

        本篇文章匯集了筆者近段在使用數(shù)據(jù)庫方面的心得,是在做“辦公自動(dòng)化”系統(tǒng)時(shí)實(shí)踐經(jīng)驗(yàn)的積累。希望這篇文章不僅能夠給大家的工作帶來一定的幫助,也希望能讓大家能夠體會(huì)到分析問題的方法;最重要的是,希望這篇文章能夠拋磚引玉,掀起大家的學(xué)習(xí)和討論的興趣,以共同促進(jìn),共同為公安科技強(qiáng)警事業(yè)和金盾工程做出自己最大的努力。

        最后需要說明的是,在試驗(yàn)中,我發(fā)現(xiàn)用戶在進(jìn)行大數(shù)據(jù)量查詢的時(shí)候,對數(shù)據(jù)庫速度影響最大的不是內(nèi)存大小,而是CPU。在我的P4 2.4機(jī)器上試驗(yàn)的時(shí)候,查看“資源管理器”,CPU經(jīng)常出現(xiàn)持續(xù)到100%的現(xiàn)象,而內(nèi)存用量卻并沒有改變或者說沒有大的改變。即使在我們的HP ML 350 G3服務(wù)器上試驗(yàn)時(shí),CPU峰值也能達(dá)到90%,一般持續(xù)在70%左右。

        本文的試驗(yàn)數(shù)據(jù)都是來自我們的HP ML 350服務(wù)器。服務(wù)器配置:雙Inter Xeon 超線程 CPU 2.4G,內(nèi)存1G,操作系統(tǒng)Windows Server 2003 Enterprise Edition,數(shù)據(jù)庫SQL Server 2000 SP3。

        本站是提供個(gè)人知識管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多