把一定數(shù)量的物體分均分給若干對(duì)象,根據(jù)物體的數(shù)量不變,由于分配對(duì)象的數(shù)量和每個(gè)對(duì)象得到的數(shù)量不相同,分物體時(shí)經(jīng)常出現(xiàn)盈(有余)、虧(不足)或盡(恰好分完)等三種情況,我們將這類(lèi)問(wèn)題稱(chēng)為盈虧問(wèn)題。解決這類(lèi)問(wèn)題的基本原理是:總差額÷分配差=分配對(duì)象的個(gè)數(shù),求出了分物對(duì)象的個(gè)數(shù),即可以求出物品的數(shù)量。盈虧問(wèn)題可以分為以下三大類(lèi): (1)一盈(虧)一盡:盈數(shù)(虧數(shù))÷兩次分物數(shù)量差=分物對(duì)象的個(gè)數(shù); (2)兩盈(虧):[大盈(虧)-小盈(虧)]÷兩次分物數(shù)量差=分物對(duì)象的個(gè)數(shù); (3)一盈一虧:(盈數(shù)+虧數(shù))÷兩次分物數(shù)量差=分物對(duì)象的個(gè)數(shù)。 下面我們就通過(guò)一些具體的例子來(lái)說(shuō)明: 一盈或一虧 在一次分配正好,一次分配不足(虧)的盈虧問(wèn)題中,總差額就是不足的數(shù)(虧),根據(jù)“總差額÷分配差=份數(shù)”可以求出參與分配的數(shù)量。 一盈或一虧 像例題2的題型,難度在于盈虧問(wèn)題隱藏在題目中了,并沒(méi)有直白的告訴我們,那么就需要我們重新解讀題目的意思,轉(zhuǎn)化為盈虧的思路來(lái)解答。解答過(guò)程分四步,第一步:比較盈虧的總差額;第二步:找出盈虧差額的原因就是分配數(shù)的差額;第三步:對(duì)應(yīng)求出分配對(duì)象的個(gè)數(shù);第四步:代入求出分配的總數(shù)量。 同盈 同虧 做同盈或者同虧問(wèn)題時(shí),兩次分配的總差額就是兩次分配后剩余數(shù)的差,根據(jù)“總差額÷分配差=份數(shù)”求出參與分配的人數(shù)。 一盈和一虧 盈虧問(wèn)題中,一次分配有剩余(盈),另一次分配有不足(虧),總差額=盈+虧,根據(jù)“總差額÷分配差=份數(shù)”即可求出參與分配的人數(shù)。 下面我們來(lái)看下本知識(shí)點(diǎn)的一些相關(guān)練習(xí),做完再看參考答案哦! 1、老師買(mǎi)來(lái)一些蘋(píng)果分給學(xué)生。如果每人分5個(gè),則恰好分完;如果每人分7個(gè),則差10個(gè),一共有多少個(gè)學(xué)生,多少個(gè)蘋(píng)果? 2、一旅游團(tuán)外出旅游,如果每輛車(chē)坐10人,則正好坐滿(mǎn),如果每輛車(chē)坐50人,則正好多一輛車(chē)。那么共有多少位旅客? 3、幼兒園阿姨給小朋友發(fā)梨子,如果每人發(fā)2個(gè),則多出10個(gè)梨子,如果每人發(fā)4個(gè),則多出2個(gè)梨子,一共有多少個(gè)小朋友?一共有多少個(gè)梨子? 4、有一堆蘋(píng)果分給小朋友。如果每人分3個(gè),則多8個(gè),如果每人分5個(gè),則多4個(gè),一共有多少個(gè)小朋友,多少個(gè)梨子? 5、有若干個(gè)梨子和若干個(gè)人,若每人分6個(gè)梨子,則多出12個(gè),若每人分7個(gè)梨子,則少11個(gè)。那么共有多少人? 參考答案:1、5人,25個(gè);2、200人;3、4人,18個(gè);4、2人,14個(gè);5、23人。 |
|
來(lái)自: 昵稱(chēng)8506127 > 《奧數(shù)》