乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      17.1.1 勾股定理

       gaohaihui5127 2019-12-06

      一、教學(xué)目標(biāo)

      1.經(jīng)歷探索及驗證勾股定理的過程,體會數(shù)形結(jié)合的思想;(重點(diǎn))

      2.掌握勾股定理,并運(yùn)用它解決簡單的計算題;(重點(diǎn))

      3.了解利用拼圖驗證勾股定理的方法.(難點(diǎn))               

      二、教學(xué)過程

      (一)情境導(dǎo)入

      如圖所示的圖形像一棵枝葉茂盛、姿態(tài)優(yōu)美的樹,這就是著名的畢達(dá)哥拉斯樹,它由若干個圖形組成,而每個圖形的基本元素是三個正方形和一個直角三角形.各組圖形大小不一,但形狀一致,結(jié)構(gòu)奇巧.你能說說其中的奧秘嗎?

      (二)合作探究

      探究點(diǎn)一:勾股定理

      【類型一】 直接運(yùn)用勾股定理

       如圖,在△ABC中,∠ACB90°,AB13cm,BC5cm,CDABD,求:

      

      (1)AC的長;

      (2)SABC;

      (3)CD的長.

      解:(1)∵在△ABC中,∠ACB90°,AB13cm,BC5cm,

                ∴AC==12cm;

      (2)      SABCCB·AC=×5×12

      30(cm2)

      (3)      SABCAC·BCCD·AB,

      CD==cm.

      方法總結(jié):解答此類問題,一般是先利用勾股定理求出第三邊,然后利用兩種方法表示出同一個直角三角形的面積,然后根據(jù)面積相等得出一個方程,再解這個方程即可.

      【類型二】 分類討論思想在勾股定理中的應(yīng)用

       在△ABC中,AB15,AC13BC邊上的高AD12,試求△ABC的周長.

      解:此題應(yīng)分兩種情況說明:

      (1)      當(dāng)△ABC為銳角三角形時,如圖①所示.

                 在RtABD中,

                  BD===9.

                在RtACD中,

                 CD===5

              ∴BC5914,

             ∴△ABC的周長為15131442

      

      (2)      當(dāng)△ABC為鈍角三角形時,如圖②所示.

            在RtABD中,

            BD===9.

          在RtACD中,

          CD===5,∴BC954,

         ∴△ABC的周長為1513432.

         ∴當(dāng)△ABC為銳角三角形時,△ABC的周長為42;

         當(dāng)△ABC為鈍角三角形時,△ABC的周長為32.

      方法總結(jié):解題時要考慮全面,對于存在的可能情況,可作出相應(yīng)的圖形,判斷是否符合題意.

      【類型三】 勾股定理的證明

       探索與研究:

      方法1:如圖:

      對任意的符合條件的直角三角形ABC繞其頂點(diǎn)A旋轉(zhuǎn)90°得直角三角形AED,

      所以∠BAE90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE的面積相等,而四邊形ABFE的面積等于RtBAERtBFE的面積之和.

      根據(jù)圖示寫出證明勾股定理的過程;

      方法2:如圖:

      該圖形是由任意的符合條件的兩個全等的RtBEARtACD拼成的,你能根據(jù)圖示再寫出一種證明勾股定理的方法嗎?

      解析:方法1:根據(jù)四邊形ABFE面積等于RtBAERtBFE的面積之和進(jìn)行解答;方法2:根據(jù)ABCRtACD的面積之和等于RtABDBCD的面積之和解答.

      解:方法1

      S正方形ACFDS四邊形ABFESBAESBFE,即b2c2(ba)(ba),

      整理得2b2c2b2a2,

      a2b2c2;

      方法2:此圖也可以看成RtBEA繞其直角頂點(diǎn)E順時針旋轉(zhuǎn)90°,再向下平移得到.

      S四邊形ABCDSABCSACD,

      S四邊形ABCDSABDSBCD,

      SABCSACDSABDSBCD,

      b2abc2a(ba),

      整理得b2abc2a(ba),b2abc2aba2,

      a2b2c2.

      方法總結(jié):證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理證明勾股定理.

      探究點(diǎn)二:勾股定理與圖形的面積

       如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面積分別為2,51,2.則最大的正方形E的面積是________

      

      解析:根據(jù)勾股定理的幾何意義,可得正方形A、B的面積和為S1,正方形C、D的面積和為S2S1S2S3,即S3251210.故答案為10.

      方法總結(jié):能夠發(fā)現(xiàn)正方形A、B、C、D的邊長正好是兩個直角三角形的四條直角邊,根據(jù)勾股定理最終能夠證明正方形AB、C、D的面積和即是最大正方形的面積.

      (三)板書設(shè)計

      1.勾股定理

      如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么a2b2c2.

      2.勾股定理的證明

      “趙爽弦圖”、“劉徽青朱出入圖”、“詹姆斯·加菲爾德拼圖”、“畢達(dá)哥拉斯圖”.

      3.勾股定理與圖形的面積

      三、教學(xué)反思

      課堂教學(xué)中,要注意調(diào)動學(xué)生的積極性.讓學(xué)生滿懷激情地投入到學(xué)習(xí)中,提高課堂效率.勾股定理的驗證既是本節(jié)課的重點(diǎn),也是本節(jié)課的難點(diǎn),為了突破這一難點(diǎn),設(shè)計一些拼圖活動,并自制精巧的課件讓學(xué)生從形上感知,再層層設(shè)問,從面積(數(shù))入手,師生共同探究突破本節(jié)課的難點(diǎn).

        本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報。
        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多