乡下人产国偷v产偷v自拍,国产午夜片在线观看,婷婷成人亚洲综合国产麻豆,久久综合给合久久狠狠狠9

  • <output id="e9wm2"></output>
    <s id="e9wm2"><nobr id="e9wm2"><ins id="e9wm2"></ins></nobr></s>

    • 分享

      生物鐘基因與非酒精性脂肪性肝病

       臨床肝膽病雜志 2019-12-13

      非酒精性脂肪性肝病 (NAFLD) 指除外酒精和其他明確損肝因素所致的, 以肝細(xì)胞脂肪變性和脂質(zhì)沉積為特征的臨床病理綜合征。其組織學(xué)亞型——非酒精性脂肪性肝炎作為重要的肝纖維化前期病變,如未行積極診治,可逐漸進(jìn)展為肝硬化,甚至肝癌等終末期肝病。NAFLD已經(jīng)成為最普遍的慢性肝病之一。流行病學(xué)研究發(fā)現(xiàn)全球NAFLD患病率為2524%,亞洲人NAFLD患病率為27.37%,且亞洲NAFLD患者肥胖癥的患病率為67%。目前我國NAFLD患病率呈明顯上升趨勢,因此明確其發(fā)病機(jī)制并積極進(jìn)行防治十分重要。

      1  生物鐘概述

      1.1  生物鐘的形成

      生物鐘是生物體為適應(yīng)外在環(huán)境而在長期的進(jìn)化過程中形成的內(nèi)在節(jié)律。地球自轉(zhuǎn)使得晝夜交替,生物體為了適應(yīng)光照、溫度等變化而出現(xiàn)一系列的生理和行為變化。哺乳動(dòng)物體內(nèi)的生物鐘分別由中樞生物鐘(下丘腦視交叉上核,SCN)和外周生物鐘(肝、腸、腎、心和脾)組成,SCN起著主要的調(diào)控作用,也稱為核心鐘,它們共同調(diào)控生物體的各種生理和行為活動(dòng)。SCN通過直接接收來自視網(wǎng)膜的光輸入來感知一天中的時(shí)間,使得中樞生物鐘相位與光相位同步,晝夜節(jié)律周期達(dá)到24 h。通過神經(jīng)和體液信號,SCN將此信息發(fā)送到大腦其他區(qū)域和外周生物鐘,這些生物鐘幾乎存在于身體其他部分的所有細(xì)胞中,并將它們同步到同一階段。中樞生物鐘節(jié)律僅對光照/黑暗變化發(fā)生反應(yīng),而外周生物鐘節(jié)律不但可受中樞生物鐘的調(diào)控,其自身還能根據(jù)某些外部環(huán)境影響(如溫度、飲食控制和進(jìn)食時(shí)間)達(dá)到自我調(diào)控,從而達(dá)到機(jī)體自我保護(hù)的穩(wěn)態(tài)平衡。

      1.2  生物鐘的分子調(diào)控機(jī)制

      生物鐘在分子水平上由多個(gè)生物鐘基因精確調(diào)控,如circadian locomotor output cycles kaput(CLOCK)、brain and muscle arylhydrocarbo receptor nuclear translocator(ARNT)-like protein-1(BMAL1)、period(Per, Per1、Per2、Per3)、cryptochrome(Cry, Cry1、Cry2)、neuronal Per-Arnt-Sim domain protein 2(NPAS2)、nuclear receptor subfamily 1 group D member 1(NR1D1,也稱Rev-Erbα)、peroxisome proliferator-activated receptor alpha(PPARα)等。

      生物鐘基因CLOCK通過bHLH-PAS結(jié)構(gòu)域與BMAL1形成異源二聚體,同Per和Cry基因啟動(dòng)子上的E盒相結(jié)合并激活其轉(zhuǎn)錄,表達(dá)產(chǎn)物Per和Cry系列蛋白由細(xì)胞胞漿轉(zhuǎn)移至胞核內(nèi),作為負(fù)性元件與CLOCK/BMAL1直接結(jié)合并抑制其活性,進(jìn)而阻遏Per和Cry的進(jìn)一步轉(zhuǎn)錄;CLOCK與BMAL1形成的異二聚體除了激活Per和Cry基因轉(zhuǎn)錄外,也激活了孤兒核受體Rev-Erb基因的轉(zhuǎn)錄。Rev-Erb基因編碼蛋白可與BMAL1啟動(dòng)子相結(jié)合并阻遏其轉(zhuǎn)錄。生物鐘基因這種負(fù)反饋循環(huán)結(jié)構(gòu)形成人體內(nèi)精確的內(nèi)源性“分子鐘”,并通過其下游的鐘控基因?qū)⑸镧姷墓?jié)律信號輸出,從而使細(xì)胞內(nèi)的分子活動(dòng)也呈現(xiàn)出時(shí)間節(jié)律。

      2  NAFLD發(fā)病機(jī)制

      目前NAFLD的發(fā)病機(jī)制尚未明確,但已經(jīng)完成從 “二次打擊學(xué)說”到“多重打擊模型”的演變?!岸嘀卮驌裟P汀闭J(rèn)為第一次打擊仍是由胰島素抵抗(IR)引發(fā)肝臟脂質(zhì)沉積,但第二次打擊僅由氧化應(yīng)激及脂質(zhì)過氧化損傷概括似乎難以解釋NAFLD的復(fù)雜性。脂代謝紊亂引起肝臟脂質(zhì)沉積是NAFLD 的重要病因,IR使胰島素抑制脂肪分解作用減弱,引起血漿游離脂肪酸(FFA)濃度升高,被肝細(xì)胞攝取后甘油三酯合成增多,促使脂質(zhì)沉積。肝臟積累的脂質(zhì)分子又通過干擾細(xì)胞胰島素受體底物的酪氨酸磷酸化和信號轉(zhuǎn)導(dǎo)加重IR。IR與脂代謝紊亂相互影響,共同推動(dòng)NAFLD病程進(jìn)展。在IR與FFA增多的基礎(chǔ)上,微粒體內(nèi)的脂質(zhì)過氧化物酶上調(diào),線粒體內(nèi)的β氧化作用增強(qiáng),導(dǎo)致肝臟對氧化應(yīng)激更加敏感,從而增加了肝臟受損的程度。線粒體活性氧反應(yīng)產(chǎn)物的改變會(huì)促進(jìn)體內(nèi)氧化還原反應(yīng)的一系列變化,而這些變化會(huì)改變氨基末端激酶的活性,并且擾亂胰島素信號。

      此外,F(xiàn)FA水平上升可導(dǎo)致脂毒性和IR,并與其他因素(如腸源性內(nèi)毒素)一起促進(jìn)炎癥因子IL-6、TNFα、IL-4等的釋放,肝臟長期暴露于高水平炎癥因子可導(dǎo)致與非酒精性脂肪性肝炎相似的組織學(xué)變化,并且IL-6、TNFα等能夠使脂聯(lián)素水平降低和瘦素水平升高,脂聯(lián)素具有抗炎、抗動(dòng)脈粥樣硬化及抗糖尿病的特性,瘦素水平增高可導(dǎo)致慢性炎癥在肥胖患者中的循環(huán)永久化。菌群失調(diào)或腸道屏障破壞會(huì)增加細(xì)菌流入肝臟,從而通過激活Toll樣受體和其他模式識別受體來促進(jìn)炎癥反應(yīng)。此外,NAFLD發(fā)病還與飲食因素及遺傳因素相關(guān)。這些因素相互影響、共同作用,導(dǎo)致NAFLD的發(fā)生。

      3  生物鐘基因表達(dá)對脂代謝的影響

      研究發(fā)現(xiàn)Per2基因敲除小鼠空腹血糖降低,肝糖原積累減少,血漿胰島素水平升高,糖異生受損,并且血脂水平降低,在高脂飲食下體質(zhì)量增加較野生型更為明顯。這說明生物鐘基因Per2不僅在調(diào)節(jié)基因表達(dá)中起作用,對新陳代謝也有重要影響。此外,Per2可以特異性地抑制PPARγ,PPARγ是氧化應(yīng)激、炎癥反應(yīng)、葡萄糖及脂質(zhì)代謝的關(guān)鍵核受體,缺乏PER2基因會(huì)影響脂質(zhì)代謝,其特征在于血漿甘油三酯和FFA的快速減少。生物鐘基因Per2在脂肪肝肝組織中的表達(dá)明顯低于正常肝組織,NAFLD患者肝細(xì)胞PPARγ和aP2高表達(dá),肝組織中增多的FFA和類花生酸與PPARγ相互作用,可激活生物鐘基因上游的調(diào)節(jié)元件從而調(diào)節(jié)BMAL1的活性。PPARα激活肝臟中的BMAL1和Rev-Erbα, PPAR的配體包括各種類型的脂質(zhì),其中在小腸中產(chǎn)生和釋放的腸道循環(huán)代謝產(chǎn)物油酰乙醇胺,在PPARα依賴下,休息期間可抑制食物攝入。Rev-Erbα是一種調(diào)節(jié)脂質(zhì)代謝和脂肪生成的核受體,受生物鐘調(diào)節(jié)并抑制BMAL1表達(dá)。Rev-Erbα和Rev-Erbβ雙敲的小鼠會(huì)出現(xiàn)血糖和甘油三酯水平升高,但是FFA水平降低,F(xiàn)FA降低可反映氧化代謝的增加。Rev-Erbs基因可通過調(diào)控INSIG2-SREBP信號通路參與脂質(zhì)代謝。

      多項(xiàng)研究發(fā)現(xiàn)Cry1或Cry2基因敲除小鼠葡萄糖不耐受,皮質(zhì)酮水平升高,肝臟中糖皮質(zhì)激素(GC)反式激活增加,脂肪生成和類固醇生成途徑改變,以及身體生長和肝臟再生受損。Cry1可通過阻斷胰高血糖素的腺苷酸環(huán)化酶信號傳導(dǎo)來抑制肝臟糖異生,Cry1和Cry2雙敲除動(dòng)物的糖異生增加。

      CLOCK或BMAL1敲除小鼠會(huì)出現(xiàn)葡萄糖耐量降低,胰島素分泌減少,胰島增殖缺陷,且癥狀隨著年齡的增長而加重。肝臟特異性敲除BMAL1可導(dǎo)致肝臟的關(guān)鍵代謝基因振蕩喪失,引起糖異生受損、葡萄糖過度清除和靜息期間的低血糖,并加重肝細(xì)胞氧化損傷、誘發(fā)IR;胰腺特異性BMAL1敲除則導(dǎo)致高血糖、葡萄糖耐量降低及由于β細(xì)胞增殖和胰島素顆粒胞吐作用導(dǎo)致的胰島素減少,因此,組織特異性生物鐘在胰島和肝臟中具有不同的作用,影響相反的代謝過程,從而在喂食和禁食期間促進(jìn)葡萄糖穩(wěn)定性?;謴?fù)高脂飲食小鼠的BMAL1活性能逆轉(zhuǎn)線粒體的腫脹形態(tài)并改善線粒體功能。由上述研究可知生物鐘基因與脂質(zhì)代謝密切相關(guān)。 

      4  生物鐘基因調(diào)控影響GC水平 

      作為全身晝夜節(jié)律的夾帶信號,GC節(jié)律在協(xié)調(diào)糖、脂質(zhì)和蛋白質(zhì)代謝中起關(guān)鍵作用。在無壓力條件下,循環(huán)中的GC水平顯示出在活躍期開始時(shí)的強(qiáng)烈日常節(jié)律性峰值(即人類的早晨和夜間嚙齒動(dòng)物的夜晚)。GC晝夜節(jié)律由中樞和外周生物鐘協(xié)調(diào)。SCN控制下丘腦-垂體-腎上腺軸的晝夜節(jié)律功能,以誘導(dǎo)GC的節(jié)律性產(chǎn)生和分泌。肝臟、脂肪組織和腎臟中的外周時(shí)鐘由SCN通過自主神經(jīng)系統(tǒng)和有節(jié)奏的夾帶信號(例如GC)調(diào)節(jié)。

      研究發(fā)現(xiàn)GC和進(jìn)食模式的晝夜節(jié)律在Per2基因敲除小鼠中變得紊亂。Cry1和Cry2可以以配體依賴性方式與糖皮質(zhì)激素受體(GR)的C末端結(jié)構(gòu)域相互作用,抑制GR介導(dǎo)的某些靶基因的反式激活。Cry1和Cry2的缺失導(dǎo)致GR介導(dǎo)的GC合成受損。缺乏Cry1或Cry2的小鼠在注射葡萄糖后恢復(fù)正常血糖的能力也顯著受損。CLOCK/BMAL1異二聚體與GR相互作用,從而降低其對GC反應(yīng)元件的親和力及其向細(xì)胞核的易位。此外,Rev-Erbα可以通過與熱休克蛋白90的相互作用來穩(wěn)定GR的核定位,從而增強(qiáng)其轉(zhuǎn)錄活性。通過這種復(fù)雜的相互作用網(wǎng)絡(luò),GR最終在生理反應(yīng)中轉(zhuǎn)化環(huán)境信息。

      5  生物鐘基因與氧化應(yīng)激變化

      環(huán)磷酸腺苷不僅僅是SCN的輸出,還是SCN起搏器的一個(gè)組成部分,調(diào)節(jié)轉(zhuǎn)錄周期。細(xì)胞能量狀態(tài)也影響氧化還原狀態(tài),食物攝入通過該途徑可能影響晝夜節(jié)律。實(shí)際上,體外實(shí)驗(yàn)已經(jīng)表明,煙酰胺腺嘌呤二核苦酸的氧化還原狀態(tài)可以調(diào)節(jié)CLOCK/BMAL1異二聚體的DNA結(jié)合活性,這表明細(xì)胞氧化還原變化可能足以改變生物鐘。體內(nèi)NAD水平受到晝夜節(jié)律的影響,從而為生物鐘提供有節(jié)奏的輸入,但也有一些間接途徑,氧化還原狀態(tài)可通過這些途徑與時(shí)鐘相關(guān)聯(lián)。最近的研究進(jìn)一步確定了細(xì)胞氧化還原狀態(tài)的24 h節(jié)律,其控制過氧化物酶抗氧化酶家族氧化態(tài)的晝夜節(jié)律振蕩。有研究發(fā)現(xiàn)參與脂質(zhì)和葡萄糖代謝的線粒體限速酶依賴Per1和Per2蛋白的調(diào)控,Per1/2缺乏或高脂飲食的小鼠會(huì)出現(xiàn)線粒體呼吸調(diào)節(jié)遲鈍。這些研究提出了細(xì)胞氧化還原狀態(tài)的振蕩可能控制代謝過程的晝夜節(jié)律并且可能獨(dú)立于生物鐘轉(zhuǎn)錄反饋環(huán)。

      6  展望

      綜上,目前許多研究已證實(shí)生物鐘基因紊亂可導(dǎo)致與NAFLD發(fā)病密切相關(guān)的脂代謝異常、氧化應(yīng)激、IR、GC分泌異常等,但生物鐘基因紊亂是否能成為NAFLD發(fā)生發(fā)展過程中的又一打擊因素,其機(jī)制仍有待繼續(xù)探索。

      參考文獻(xiàn)

      [1]ESLAM M, GEORGE J. Genetic and epigenetic mechanisms of NASH[J]. Hepatol Int, 2016, 10(3): 394-406.

      [2]YANG YL, ZHENG LY, GU WM, et al. Effect of total glucosides of paeony regulate HMGB1,RAGE pathway on nonalcoholic fatty liver disease in rats[J]. Chin J Clin Pharmacol Ther, 2017, 22(6): 611-616. (in Chinese)

      楊以琳, 鄭琳穎, 古偉明, 等. 白芍總苷對非酒精性脂肪性肝病大鼠HMGB1、RAGE通路的調(diào)控作用[J]. 中國臨床藥理學(xué)與治療學(xué), 2017, 22(6): 611-616.

      [3]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.

      [4]MENG YL, ZHANG HY, SONG BG, et al. An investigation of the prevalence rate of fatty liver disease among people undergoing physical examination in Tangshan, China[J]. J Clin Hepatol, 2017, 33(12): 2376-2380.(in Chinese)

      孟昱林, 張海艷, 宋寶國, 等. 唐山市體檢人群脂肪肝患病率調(diào)查分析[J]. 臨床肝膽病雜志, 2017, 33(12): 2376-2380.

      [5]DIBNER C, SCHIBLER U, ALBRECHT U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517-549.

      [6]MOHAWK JA, GREEN CB, TAKAHASHI JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35: 445-462.

      [7]GLASER FT, STANEWSKY R. Synchronization of the drosophila circadian clock by temperature cycles[J]. Cold Spring Harb Symp Quant Biol, 2007, 72: 233-242.

      [8]DAMIOLA F, LE MINH N, PREITNER N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus[J]. Genes Dev, 2000, 14(23): 2950-2961.

      [9]KING DP, ZHAO Y, SANGORAM AM, et al. Positional cloning of the mouse circadian clock gene[J]. Cell, 1997, 89(4): 641-653.

      [10]LANDOLT HP. CIRCADIAN RHYTHMS. Caffeine, the circadian clock, and sleep[J]. Science, 2015, 349(6254): 1289.

      [11]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.

      [12]BERSTEN DC, SULLIVAN AE, PEET DJ, et al. bHLH-PAS proteins in cancer[J]. Nat Rev Cancer, 2013, 13(12): 827-841.

      [13]MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012, 29(3): 227-251.

      [14]WILLEBRORDS J, PEREIRA IV, MAES M, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res, 2015, 59: 106-125.

      [15]FANG YL, CHEN H, WANG CL, et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”[J]. World J Gastroenterol, 2018, 24(27): 2974-2983.

      [16]ONYEKWERE CA, OGBERA AO, SAMAILA AA, et al. Nonalcoholic fatty liver disease: Synopsis of current developments[J]. Niger J Clin Pract, 2015, 18(6): 703-712.

      [17]WEI GC, HE JY.  Traditional Chinese medicine intervention to nonalcoholic fatty liver disease based on physique identi cation[J].  J Changchun Univ Chin Med, 2018, 34(3): 518-521. (in Chinese)

      魏功昌, 何瑾瑜.  中醫(yī)體質(zhì)辨識治療非酒精性脂肪性肝?。跩].  長春中醫(yī)藥大學(xué)學(xué)報(bào), 2018, 34(3): 518-521.

      [18]REBRIN K, STEIL GM, MITTELMAN SD, et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. J Clin Invest, 1996, 98(3): 741-749.

      [19]SHULMAN GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease[J]. N Engl J Med, 2014, 371(23): 2237-2238.

      [20]SACHDEV MS, RIELY CA, MADAN AK. Nonalcoholic fatty liver disease of obesity[J]. Obes Surg, 2006, 16(11): 1412-1419.

      [21]CARDOSO AR, CABRAL-COSTA JV, KOWALTOWSKI AJ. Effects of a high fat diet on liver mitochondria: Increased ATP-sensitive K+ channel activity and reactive oxygen species generation[J]. J Bioenerg Biomembr, 2010, 42(3): 245-253.

      [22]FELDSTEIN AE, WERNEBURG NW, CANBAY A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway[J]. Hepatology, 2004, 40(1): 185-194.

      [23]TOMITA K, TAMIYA G, ANDO S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut, 2006, 55(3): 415-424.

      [24]PAZ-FILHO G, MASTRONARDI C, FRANCO CB, et al. Leptin: Molecular mechanisms, systemic pro-inflammatory effects, and clinical implications[J]. Arq Bras Endocrinol Metabol, 2012, 56(9): 597-607.

      [25]KAPIL S, DUSEJA A, SHARMA BK, et al. Small intestinal bacterial overgrowth andtoll-like receptor signaling in patients with non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2016, 31(1): 213-221.

      [26]LANASPA MA, SANCHEZ-LOZADA LG, CHOI YJ, et al. Uric acid induces heaptic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver[J]. J Biol Chem, 2012, 287(48): 40732-40744.

      [27]GIUDICE EM, GRANDONE A, CIRILLO G, et al. The association of PNPLA3 variants with liver enzymes in childhood obesity is driven by the interaction with abdominal fat[J]. PLoS One, 2011, 6(11): e27933.

      [28]ZANI F, BREASSON L, BECATTINI B, et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression[J]. Mol Metab, 2013, 2(3): 292-305.

      [29]GRIMALDI B, BELLET MM, KATADA S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma[J]. Cell Metab, 2010, 12(5): 509-520.

      [30]ZHOU D, WANG Y, CHEN L, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology[J]. Oncotarget, 2016, 7(8): 8625-8639.

      [31]MARION-LETELLIER R, SAVOYE G, GHOSH S. Fatty acids, eicosanoids and PPAR gamma [J]. Eur J Pharmacol, 2016, 785: 44-49.

      [32]YANG G, JIA Z, AOYAGI T, et al. Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism[J]. PLoS One, 2012, 7(8): e38117.

      [33]LI S, LIN JD. Molecular control of circadian metabolic rhythms[J]. J Appl Physiol (1985), 2009, 107(6): 1959-1964.

      [34]FU J, GAETANI S, OVEISI F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha[J]. Nature, 2003, 425(6953): 90-93.

      [35]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.

      [36]TAHARA Y, SHIBATA S. Circadian rhythms of liver physiology and disease: Experimental and clinical evidence[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(4): 217-226.

      [37]LAMIA KA, PAPP SJ, YU RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor[J]. Nature, 2011, 480(7378): 552-556.

      [38]SUN S, ZHOU L, YU Y, et al. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/beta-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 506(3): 746-753.

      [39]ZHANG EE, LIU Y, DENTIN R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis[J]. Nat Med, 2010, 16(10): 1152-1156.

      [40]MARCHEVA B, RAMSEY KM, BUHR ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631.

      [41]LAMIA KA, STORCH KF, WEITZ CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39): 15172-15177.

      [42]JACOBI D, LIU S, BURKEWITZ K, et al. Hepatic bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J]. Cell Metab, 2015, 22(4): 709-720.

      [43]DUMBELL R, MATVEEVA O, OSTER H. Circadian clocks, stress, and immunity[J]. Front Endocrinol (Lausanne), 2016, 7: 37.

      [44]ASTIZ M, OSTER H. Perinatal programming of circadian clock-stress crosstalk[J]. Neural Plast, 2018, 2018: 5689165.

      [45]YANG S, LIU A, WEIDENHAMMER A, et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms[J]. Endocrinology, 2009, 150(5): 2153-2160.

      [46]RUTTER J, REICK M, WU LC, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors[J]. Science, 2001, 293(5529): 510-514.

      [47]ASHER G, SCHIBLER U. Crosstalk between components of circadian and metabolic cycles in mammals[J]. Cell Metab, 2011, 13(2): 125-137.

      [48]KIL IS, LEE SK, RYU KW, et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria[J]. Mol Cell, 2012, 46(5): 584-594.

      [49]NEUFELD-COHEN A, ROBLES MS, AVIRAM R, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins[J]. Proc Natl Acad Sci U S A, 2016, 113(12): e1673-e1682.

      終于被你滾到底了

        轉(zhuǎn)藏 分享 獻(xiàn)花(0

        0條評論

        發(fā)表

        請遵守用戶 評論公約

        類似文章 更多